|
|
|
|
 |
|
La datation par le carbone 14 |
|
|
|
|
|
L'ESSENTIEL SUR...
La datation par le carbone 14
Publié le 27 janvier 2015
Dernière mise à jour : 04 mars 2022
Le carbone possède plusieurs formes – ou « isotopes » – parmi lesquelles le carbone 14, ou 14C. Cet élément est radioactif, et sa radioactivité décroît au fil du temps à un rythme parfaitement régulier. Les scientifiques s’en servent donc comme « chronomètre » pour estimer l’âge d’objets très variés : œuvres d’art, roches, fossiles… La datation au carbone 14 est ainsi utilisée dans de nombreux domaines scientifiques : des sciences de la Terre aux sciences du vivant, en passant par les sciences de l’Homme et de la société.
LE PRINCIPE DE LA DATATION
Le carbone 14 est un isotope radioactif du carbone. Sa période radioactive, temps au bout duquel la moitié de ces atomes s’est désintégrée en azote 14, est de 5 730 ans. Se formant dans la haute atmosphère de la Terre, il existe 1 atome de carbone 14 pour 1 000 milliards de carbone 12 (isotope non radioactif). Comme tout isotope du carbone, le carbone 14 se combine avec l’oxygène de notre atmosphère pour former alors du CO2 (dioxyde de carbone). Ce CO2 est assimilé par les organismes vivants tout au long de leur vie : respiration, alimentation… En mourant, ils n’en assimilent plus. La quantité de carbone 14 assimilé diminue alors au cours du temps de façon exponentielle tandis que celle de carbone 12 reste constante.
La datation repose sur la comparaison du rapport entre les quantités de carbone 12 et de carbone 14 contenues dans un échantillon avec celui d’un échantillon standard de référence. On déduit de cette comparaison « l’âge carbone 14 » de l’échantillon qu’on cherche à dater. Cet « âge carbone 14 » est ensuite traduit en âge réel (ou « âge calendaire »), en le comparant à une courbe-étalon, réalisée par les chercheurs à force de nombreuses mesures complémentaires. On peut ainsi en déduire l'âge de l’objet étudié et remonter jusqu'à 50 000 ans environ (au-delà, la technique n’est pas assez précise).
Méthodologie
* Les chercheurs prélèvent un échantillon d’un objet (quelques grammes ou microgrammes) qu’ils veulent dater, et le préparent à travers une succession de réactions physico-chimiques.
* On ne conserve que le carbone contenu dans l’échantillon.
* Les chercheurs déterminent la quantité de carbone 14 par des mesures de radioactivité ou par spectrométrie de masse, et peuvent ainsi calculer « l’âge carbone 14 » de l’objet.
* Il leur faut ensuite comparer cet « âge carbone 14 » à une courbe d’étalonnage pour relier cet âge relatif à un âge réel, et ainsi savoir depuis combien de temps l’objet existe.
*
Le carbone 14, de sa formation à sa désintégration
Les atomes d'azote (14N) qui composent la haute atmosphère interceptent une partie du rayonnement cosmique : des neutrons percutent les atomes et les transforment en atomes de carbone 14. En s'oxydant dans l'atmosphère, le carbone 14 forme du CO2. Les plantes incorporent le carbone 14 via le CO2, et le transmettent à tout organisme vivant – étant la base de toute chaîne alimentaire. Dès qu'un organisme meurt, il n'incorpore plus de carbone 14. Celui-ci n'est plus renouvelé, et va se désintégrer progressivement : le « décompte » de sa radioactivité se met alors en route.
Vidéo
Le cycle du carbone
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
ENJEUX : COMPRENDRE PAR LA DATATION LES GRANDS MÉCANISMES EN SCIENCES DE LA VIE ET DE LA TERRE
Utilisés comme chronomètres ou comme traceurs d’échange entre différents réservoirs de carbone, les « âges carbone 14 » sont utilisés dans une variété de domaines de recherche :
* En histoire et archéologie : c’est un outil précieux et largement utilisé pour dater des échantillons organiques et construire une chronologie (en égyptologie par exemple).
* En sismologie et volcanologie : les chercheurs déterminent ainsi la fréquence d’événements sismiques ou volcaniques et peuvent mieux évaluer les risques potentiels futurs.
* En climatologie : le carbone 14 permet de suivre l’évolution du cycle du carbone, intimement lié aux variations climatiques et environnementales. Cette technique de datation permet, en étudiant des prélèvements de sédiments, de dresser une chronologie précise de l'enchaînement des événements climatiques passés.
* En océanographie et agronomie : le carbone 14 sert de traceur environnemental. En datant certains fossiles océaniques ou les différents composés de la matière organique dans les sols, les scientifiques peuvent ainsi retracer la dynamique de la circulation océanique dans le passé, déterminer les temps de résidence du carbone dans les sols et ainsi aboutir à une meilleure compréhension du cycle du carbone.
* Enfin, l'analyse du carbone 14 dans les écosystèmes permet l'étude de la radioactivité présente dans l’environnement.
C'est une autre histoire
709 k abonnés
Un débat de 100 ans résolu : est-ce un Léonard de Vinci ?
RECHERCHE ET DÉVELOPPEMENT : AFFINER LES ESTIMATIONS D’« ÂGE CARBONE »
Les chercheurs tentent d’améliorer les techniques de datation du carbone 14, et de les compléter avec d’autres approches (datation uranium-thorium, potassium-argon).
Historiquement les premières datations d’échantillons ont été faites avec des compteurs proportionnels à gaz (on mesure la radioactivité émise par le carbone 14, transformé auparavant en gaz carbonique).
Cette méthode a laissé la place à deux techniques complémentaires :
* le détecteur à scintillation : ce détecteur mesure la radioactivité d’un échantillon en carbone 14 par la mesure de la lumière émise à chaque désintégration d’un atome de carbone 14. Cette méthode est donc une mesure directe de la radioactivité. Son défaut est la nécessité d’utiliser de grandes quantités de matière (plusieurs grammes) pour obtenir des mesures avec une précision suffisante, ce qui est très contraignant dans le cas où l’objet étudié est très fragile, petit ou précieux.
* le spectromètre de masse par accélérateur (SMA) : cette technique a été développée pour la datation d’échantillons de petite quantité et/ou d’âge allant jusqu’à 50 000 ans. Elle compte directement le nombre d’atomes de carbone 14 présents dans un échantillon, permettant ainsi de consommer moins de matière (quelques microgrammes) que la technique précédente, et permettant de dater des objets plus anciens.
Ces techniques reposent toutes les deux sur une préparation minutieuse de la matière
à dater :
* Préparation pour éliminer tout matériau contaminant par traitement mécanique et chimique,
* Combustion ou hydrolyse des carbonates de la matière obtenue pour transformer le carbone en gaz carbonique,
* Dans le cas du SMA : réduction du gaz carbonique pour obtenir du graphite qui est l’élément introduit dans le spectromètre.
Pourquoi la datation au carbone 14 est une mesure dite « relative » ?
La quantité de carbone 14 formé dans la haute atmosphère, bien qu’assez constante, peut connaître des variations. De même, cet élément ne se répartit pas uniformément sur Terre : la quantité assimilée par les organismes varie donc en fonction du contexte dans lequel vivait l’organisme (quantité formée en haute atmosphère, conditions environnementales, métabolisme, etc.).
Comme ces mécanismes sont variables, les « âges carbone 14 » sont relatifs : ils dépendent pour une part de l’âge de l’objet d’étude, mais également des conditions environnementales qui existaient alors. Pour pallier cela, les chercheurs ont établi une échelle de calibration des « âges carbone 14 » avec différentes mesures d’objets dont on connaît la date (datation absolue), pour les comparer avec les « âges carbone 14 » qu’ils obtiennent (datation relative).
Les isotopes du carbone
Le carbone possède 16 isotopes en tout. Le carbone 12 et le carbone 13 sont les plus abondants.
* Carbone 12 - Abondance : ~ 98,99 % - Neutrons : 6 - Protons : 6 - Signe distinctif : le plus abondant
* Carbone 13 - Abondance : ~ 1,11 % - Neutrons : 7 - Protons : 6 - Signe distinctif : isotope stable (ne se désintègre pas)
* Carbone 14 - Abondance : <0,01% - Neutrons : 8 - Protons : 6 - Signe distinctif : isotope radioactif.
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
DOSSIER SUR LE CYCLE DU COMBUSTIBLE NUCLÉAIRE |
|
|
|
|
|
DOSSIER SUR LE CYCLE DU COMBUSTIBLE NUCLÉAIRE
L'amont du cycle : du minerai brut à l'uranium enrichi
De la mine jusqu’au réacteur, toute une chaîne industrielle assure la transformation de l’uranium contenu dans le minerai pour obtenir l’oxyde d’uranium (UO2) qui constitue les pastilles de combustible utilisées dans le parc de réacteurs actuels. Extraction sélective, purification, enrichissement… autant d’enjeux scientifiques et techniques pour les équipes du CEA.
PUBLIÉ LE 28 JUILLET 2021
Les enjeux autour de l'amont du cycle du combustible nucléaire
Pour fonctionner, les réacteurs nucléaires exigent de l’uranium très pur, ce qui représente un défi pour la chimie car l’uranium doit être purifié de tous les autres éléments présents dans le minerai. Or, l’uranium représente au mieux quelques pourcents en masse de ce minerai. De plus, l’uranium naturel ne contient que 0,7 % d’235U fissile (le reste étant de l’238U), alors que le combustible des réacteurs à eau sous pression (REP) doit contenir de l’ordre de 4 % d’235U. Ainsi, dès les années 1950-1960, le CEA a conçu et mis en place toute la chaîne industrielle allant du minerai brut [1] jusqu’à l’uranium enrichi.
La production mondiale d’uranium s’est élevée à 54 000 tonnes en 2019 [2]. À terme, il faudra apprendre à exploiter des gisements plus pauvres, à un coût raisonnable et dans les meilleures conditions environnementales possibles.
[1] Le CEA était chargé de la prospection minière, avant de transférer cet aspect à la Cogema en 1976.
[2] Données sur l’énergie nucléaire 2020, OCDE 2021, NEA No. 7556.
Extraire l’uranium et le purifier
Tout commence dans les mines d’où l’uranium est extrait. Le minerai est ensuite concassé, broyé puis imprégné d’une solution acide oxydante pour dissoudre l’uranium à hauteur de quelques grammes par litre. Puis l’uranium est sélectivement extrait de la solution. Viennent ensuite plusieurs étapes de purification avant d’obtenir un concentré minier d’uranium appelé yellow cake.
Concentré d’uranium sous forme de yellow cake obtenu après dissolution du minerai d’uranium dans de l’acide. © Philippe Lesage/Areva
Un autre mode d’exploitation des mines, baptisé In Situ Leaching ou In Situ Recovery, est de plus en plus utilisé, en particulier au Kazakhstan. Lorsque la géologie s’y prête, on peut en effet se passer d’excavation : on récupère l’uranium en injectant directement une solution acide oxydante dans le gisement, puis en pompant la solution chargée en uranium. L’extraction se fait par passage de la solution sortant du puits sur une résine échangeuse d’ions ou par échange liquide/liquide. L’uranium est ensuite désextrait, précipité et séché pour produire le « yellow cake ». Ce mode d’exploitation représente la moitié de la production d'uranium.
Les principaux objectifs des recherches menées au CEA dans ce domaine sont :
* d’améliorer les mesures nucléaires pour la prospection et l’exploitation des mines d’uranium,
* de développer des procédés d’extraction sélectifs et durables de l’uranium,
* de modéliser les procédés de l’amont du cycle.
Du yellow cake à l’uranium enrichi
À l’usine d’Orano de Malvési, le yellow cake subit une purification complémentaire avant d’être converti en tetrafluorure d’uranium, lequel est ensuite transformé, à l’usine Orano de Pierrelatte, en hexafluorure d’uranium (UF6) afin de procéder à l’étape d’enrichissement de l’uranium permettant d’augmenter la proportion d’235U. Lors de cette opération, l'uranium gazeux est introduit dans des centrifugeuses au sein desquelles il est séparé en deux flux : l'un enrichi en 235U (entre 3 et 5 %) et l'autre appauvri en 235U (0,1 à 0,3 %). Une fois enrichi, l’hexafluorure est de nouveau converti en oxyde d’uranium solide afin d’être utilisé pour la fabrication des combustibles nucléaires.
Le CEA intervient auprès d’Orano, en support aux usines de Malvési et de Pierrelatte, en particulier afin de comprendre le comportement du phosphore, une impureté présente lors des diverses opérations de purification et de conversion et ainsi de mieux maîtriser sa teneur dans l’UF6 produit.
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
La physique à la conquête de l’infiniment bref |
|
|
|
|
|
La physique à la conquête de l’infiniment bref
08.01.2024, par Sebastián Escalón
Génération d'impulsions laser attosecondes à l'Institut Max Planck d'optique quantique (Garching, Allemagne).
Thorsten Naeser/ LAP/ Max Planck Institute of Quantum Optics
Partager
Mise à l’honneur par le prix Nobel 2023, la physique attoseconde s’attaque à une autre dimension de l’infiniment petit : le temps. À la clé, la possibilité de visualiser et contrôler la dynamique des électrons
Le 3 octobre dernier, la physicienne Anne L’Huillier donnait son cours de physique à l’université de Lund, en Suède. À la pause, elle ralluma son portable pour voir si elle avait reçu de nouveaux messages. C’est alors qu’elle apprît la nouvelle : elle venait d’obtenir le prix Nobel de physique conjointement avec le Français Pierre Agostini et l’Austro-Hongrois Ferenc Krausz. Elle était la cinquième femme à recevoir cette distinction, la seconde française après Marie Curie. Mais avant de se laisser emporter par l’émotion, Anne L’Huillier avait quelque chose à terminer : son cours. Ce qu’elle fit, en s’excusant auprès de ses étudiants de ce qu’elle terminerait un peu plus tôt que d’habitude.
Anne L’Huillier, Prix Nobel de physique 2023, pose devant son spectromètre XUV, avec Philippe Balcou, en 1991. Ce spectromètre sous vide a permis l'observation de la génération d'harmoniques d'ordre élevé.
CEA-LIDYL
Partager
Avec ce Nobel, l’Académie royale des sciences de Suède récompensait les méthodes expérimentales ayant permis la production d’impulsions de lumière d’une durée de l’ordre de l’attoseconde, soit un milliardième de milliardième de seconde. Comme aiment le rappeler les chercheurs, il y a autant d’attosecondes dans une seconde que de secondes depuis le Big Bang. Ces impulsions ont ouvert un nouveau champ de recherche : pour la première fois, les scientifiques disposaient d’un outil pour explorer des phénomènes ultrarapides, et en particulier la dynamique des électrons.
« Quand vous regardez la matière, c’est le cortège électronique qui détermine la position des atomes, explique Valérie Blanchet, physicienne au Centre lasers intenses et applications1 (Celia). La structuration de la matière, ce sont les électrons qui la déterminent. » D’où l’immense intérêt de se focaliser sur ces minuscules particules chargées négativement. La physique attoseconde apporte la dimension « temps » aux sciences de l’infiniment petit : ce n’est pas seulement l’état initial et l’état final d’un système qu’elle permet d’observer, mais aussi la transition de l’un à l’autre. Et ce n’est pas tout : les impulsions attosecondes permettent aussi de contrôler la dynamique des électrons dans la matière. Porté pendant trente ans par un groupe réduit d’opticiens et de physiciens, le domaine « atto » intéresse désormais de nombreux autres champs scientifiques, de la chimie à la médecine en passant par la biologie. Il est d'ailleurs aujourd'huiau coeur du programme et équipements prioritaire de recherche (PEPR) exploratoire LUMA – piloté par le CNRS et le CEA – qui vise à comprendre, façonner et exploiter la lumière pour contrôler des systèmes physico-chimiques et biologiques et ouvrir la voie à de nouvelles technologies vertes.
Mystérieuses harmonies
Tout a commencé en 1988, lorsqu’une jeune physicienne récemment embauchée par le Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Anne L’Huillier, braque un laser sur des atomes d’argon. L’équipe dont elle fait partie détient une réputation mondiale dans l’étude des interactions lumière-matière. Mais cette fois-ci, au lieu de regarder l’effet de la lumière sur les atomes, elle décide de regarder les photons issus de cette interaction. « C’était de la pure curiosité d’expérimentatrice. Aucun théoricien ne lui avait suggéré de regarder cela », explique Philippe Balcou, directeur de recherche au Celia, qui, un an après cette expérience, est devenu le premier étudiant en thèse d’Anne L’Huillier. La physicienne observe alors quelque chose d’inattendu : le laser induit l’émission de faisceaux de photons ultraviolets, dont les fréquences sont des multiples de celle du laser, appelées harmoniques. Mais leur présence était alors inexplicable, d’autant plus que l’intensité de ces harmoniques, au lieu de retomber rapidement, atteint un plateau qui se prolonge dans l’extrême ultraviolet et même au-delà. Anne L’Huillier décide dès lors de se consacrer à l’étude de ce phénomène.
Cellule de gaz argon où sont générées les harmoniques d'ordre élevé sur l'installation laser femto, à l'Institut des sciences moléculaires d'Orsay.
Lou Barreau
Partager
« Au début, personne ne comprenait rien à ces harmoniques », admet Richard Taïeb, chercheur au Laboratoire de chimie physique - matière et rayonnement2, qui fut l’un des premiers théoriciens à travailler avec Anne L’Huillier. Il faudra d’ailleurs attendre cinq ans pour que des chercheurs en expliquent l’origine. Lorsque les électrons sont excités par le laser et « arrachés » de l’atome (qui est ainsi ionisé), ils s’échappent de leur cœur. Mais lorsque la phase de la lumière laser s’inverse, l’électron est brusquement ramené vers le noyau atomique ionisé, et peut alors se recombiner avec ce dernier. Pour se débarrasser du surplus d’énergie qu’il a accumulé lors de son excitation par le laser, il émet un photon ultraviolet. Très vite, ces harmoniques suscitent l’intérêt des expérimentateurs et des théoriciens. « L’une des motivations pour les étudier, c’était d’avoir une source de lumière cohérente dans l’UV extrême », se souvient Richard Taieb. En effet, ces faisceaux ne partent pas dans tous les sens : ils sont émis exactement dans la direction du laser. « On avait là une sorte de synchrotron de poche », s’amuse Philippe Balcou.
Les impulsions attosecondes permettent de contrôler la dynamique des électrons dans la matière
Au milieu des années 1990, les physiciens comprennent que les harmoniques sont en phase. À intervalles réguliers, toutes les fréquences s’additionnent et forment une impulsion extrêmement brève. Il ne reste plus qu’à trouver le moyen de mesurer sa durée.
C’est Pierre Agostini, inspiré par les travaux des théoriciens Richard Taïeb, Valérie Véniard et Alfred Maquet qui détermine pour la première fois la durée d’une impulsion : 250 attosecondes. Nous sommes alors en 2001, la physique « atto » vient de naître. Les deux décennies suivantes ont vu l’apparition de lasers plus performants. « Lorsqu’on faisait les premières caractérisations des harmoniques, au début des années 1990, nous disposions d’un laser qui tirait un coup par minute, rappelle Philippe Balcou. Aujourd’hui ils tirent plus de 10 000 fois par seconde. » D’autant que l’amélioration des lasers s’est conjuguée à une meilleure maîtrise de la génération d’impulsions attosecondes. L’heure était désormais à l’exploitation de ce formidable outil.
Libérer l’électron
L’un des exploits les plus remarquables de la science attoseconde a été l’observation de l’effet photoélectrique. Décrit par Einstein en 1905, il consiste en l’éjection d’un électron au moment où un atome absorbe un photon d’une énergie particulière. En 2010, Ferenc Krausz montre que cette éjection n’est pas immédiate : l’électron met une poignée d’attosecondes à s’échapper de l’emprise du noyau atomique. Ce temps d’éjection varie aussi en fonction des caractéristiques de l’électron excité. Qu’est-ce qui retarde ces électrons ? Qu’est-ce qui distingue les différents électrons d’un atome ? Comment ceux-ci s’influencent-ils les uns les autres ? Les chercheurs ont enfin les outils expérimentaux et théoriques pour aborder ces questions. « Grâce aux impulsions attosecondes, on peut commencer à explorer les interactions entre les électrons, ce que l’on appelle aussi corrélation électronique, de façon résolue dans le temps », explique Valérie Blanchet.
Séquence d'un film en 3D de la photoémission d’un atome d’hélium, montrant son évolution lorsqu'il cède un électron sous l'effet de la lumière. La scène dure 30 millionièmes de milliardième de seconde et a été filmée pour la première fois grâce à un laser à impulsions ultrabrèves.
A. Autuori Genaud/ CEA
Partager
Ces interactions entre électrons conditionnent les interactions des atomes entre eux, notamment lors des réactions chimiques. Celles-ci commencent toujours par un réarrangement électronique : le mouvement des noyaux ne survient que bien plus tard. « Ce qui me plaît dans la physique attoseconde, c’est qu’on se situe aux premiers instants des phénomènes », affirme Lou Barreau, chercheuse à l’Institut des sciences moléculaires d'Orsay3. Lors de ses expériences, elle utilise des impulsions attosecondes pour ioniser différentes molécules. « J’essaie de comprendre l’influence du milieu sur l’éjection des électrons. Est-ce que la présence d’un groupe méthyle ou d’un cycle aromatique influence le temps d’ionisation, par exemple. »
En se plaçant en amont de la chimie, les chercheurs voudraient contrôler, grâce aux impulsions attosecondes, le déroulement des réactions chimiques. Prenons une molécule que l’on voudrait casser à un endroit bien précis afin d’obtenir un certain produit. « L’idée est d’exciter des électrons dans une molécule pour créer une onde électronique. Cette onde se propagerait le long de la molécule et affaiblirait certaines liaisons atomiques », explique Lou Barreau. Les impulsions attosecondes serviraient ainsi à « graver » sur la molécule des lignes de découpe avant la réaction chimique afin d’obtenir les produits escomptés. Cependant, beaucoup de travail sera nécessaire avant de mettre à profit ces nouvelles possibilités. « Il y a déjà des preuves de principe sur des acides aminés, mais il s’agit pour l’instant d’ions. On n’arrive pas encore à le faire sur des molécules neutres », tempère Lou Barreau.
Illustration de deux énantiomères d'un acide aminé générique chiral.
Wikimedia commons
Partager
Un type de molécule bien particulier a beaucoup intéressé les chercheurs des sciences attosecondes. Il s’agit des molécules chirales. Chaque molécule chirale a deux versions, deux énantiomères, qui, comme nos deux mains, sont parfaitement identiques si ce n’est qu’elles sont l’image dans un miroir l’une de l’autre. Depuis le XIXe siècle, on sait que ces molécules énantiomères ont la propriété de modifier dans deux sens opposés la polarisation d’une lumière polarisée. C’est ce qu’on appelle l’activité optique. L’équipe HXUV du Celia a ionisé des molécules chirales et montré que le temps que mettent les électrons à s’échapper de la molécule et leur direction d’éjection dépendent du sens de polarisation de la lumière ainsi que de l’énantiomère.
L’inexorable expansion du domaine attoseconde
L’autre intérêt de la physique attoseconde est son utilité pour d’autres disciplines. « Avec les progrès de la physique attoseconde, on peut maintenant étudier des objets plus complexes qui nous connectent à d’autres domaines », explique Franck Lépine, chercheur à l'Institut lumière matière4. Parmi ces domaines, l’astrophysique. « Les molécules de milieux interstellaires réagissent aux rayonnements ionisants présents dans l’espace », précise le chercheur. Afin de mieux comprendre la relation entre la chimie interstellaire et le rayonnement ionisant, son équipe a utilisé des impulsions attosecondes dans l’extrême ultraviolet pour étudier la stabilité de molécules carbonées, prémices de l’apparition de la vie dans l’Univers.
Les méthodes attoseconde lui permettent aussi d’étudier l’ADN et les protéines. « On s’intéresse aux dommages que produisent les rayonnements énergétiques sur la matière vivante. Comprendre les premiers instants de ces processus pourrait permettre d’imaginer de nouvelles façons de nous protéger de ce rayonnement », précise Franck Lépine, qui développe en collaboration avec Ferenc Krausz une nouvelle méthode de diagnostic médical précoce. « Grâce à des impulsions attosecondes à large spectre, on peut détecter la présence infime de certaines molécules signatures de cancer dans des fluides biologiques et ainsi prédire très en amont l’apparition de la maladie », explique le physicien.
Dispositif permettant de produire des impulsions de lumière attosecondes à l'Institut lumière matière.
Éric Le Roux / Université Lyon 1
Partager
Les chercheurs pensent qu’il faudra encore plusieurs années avant que l’attoseconde entre dans la vie de tous les jours. « Je compare le domaine attoseconde à celui des lasers. Le concept de laser a été posé au début du XXe siècle. Il a ensuite fallu cinquante ans pour construire le premier laser, puis trente ans de plus pour qu’il révolutionne notre vie au quotidien avec la lecture de code barre, le CD ou la chirurgie laser », relève Fabrice Catoire, théoricien des cohérences à l’échelle attoseconde au Celia. Mais même si l’attoseconde tarde à entrer dans la vie quotidienne, il est fort probable qu’elle entrera rapidement dans la boîte à outils des scientifiques. « Il suffit de voir l’évolution du domaine femtoseconde ou picoseconde depuis les années 1980 et 1990, observe Franck Lépine. À partir de choses très fondamentales, on est passé à des applications dans l’industrie, la chirurgie, la spectrométrie ultrarapide. On parle de femtochimie ou femtomagnétisme. Pour l’atto, on en est aux preuves de concept, mais peu à peu on va essaimer vers d’autres domaines. » Patience donc : les avancées scientifiques ne se font pas en quelques attosecondes. ♦
-----------------------------------------------------------
Laserix et l’exception française
La série de Nobels de physique français de ces dernières années (Gérard Mourou, Alain Aspect, Pierre Agostini, Anne L’Huillier) ne doit rien au hasard. Leur carrière se caractérise par une utilisation intensive de lasers. Or, depuis les années 1960, la France se distingue par sa grande maîtrise de cet instrument. Il existe une exception française en matière de lasers, faite de techniciens, ingénieurs et chercheurs au top, de plateformes d’excellence et d’entreprises leaders mondiales du secteur telles que Thales et Amplitude.
Laserix, la plateforme laser de l’université Paris-Saclay, fait partie de cette success story. Depuis 2003, Laserix offre aux chercheurs de diverses disciplines, sur le modèle de la résidence d’artiste, des sources lasers femtosecondes d’une exceptionnelle qualité. Sa spécialité est la génération d’impulsions dans les très courtes longueurs d’onde, l’UV extrême, et « fournit une source 10 à 100 fois plus énergétique que les sources harmoniques à ces longueurs d’onde », affirme Sophie Kazamias, directrice scientifique de la plateforme depuis 2015.
Parmi les recherches menées grâce à Laserix, il y a l’accélération laser-plasma. Cette technique permet d’accélérer des électrons, avec des champs accélérateurs 1 000 fois supérieurs à ceux des accélérateurs actuels, jusqu’à des vitesses proches de celle de la lumière. À cette vitesse, des phénomènes relativistes se manifestent, comme une augmentation notable de la masse des particules. Ce domaine est sans doute parmi les plus « chauds » de la physique. « Un jour, l’accélération laser-plasma sera l’objet d’un Nobel. Et parmi le groupe de scientifiques récompensés, il y aura sans doute un Français », prédit Sophie Kazamias. ♦
Notes
* 1.
Unité CNRS/CEA/Université de Bordeaux.
* 2.
Unité CNRS/Sorbonne Université.
* 3.
Unité CNRS/Université Paris-Saclay.
* 4.
Unité CNRS/Université Claude Bernard Lyon 1.
DOCUMENT CNRS LIEN
|
|
|
|
|
 |
|
Les 4 interactions fondamentales |
|
|
|
|
|
Les 4 interactions fondamentales
Publié le 28 juillet 2022
Quatre interactions fondamentales régissent l’Univers : l’interaction électromagnétique, l’interaction faible, l’interaction nucléaire forte et l’interaction gravitationnelle. Les interactions électromagnétiques forte et faible sont décrites par le modèle standard de la physique des particules, qui est en cohérence avec la physique quantique, tandis que l’interaction gravitationnelle est actuellement décrite par la théorie de la relativité générale. Quelles sont les propriétés de chacune de ces interactions ? Quel est leur impact sur notre quotidien ? Quels sont les enjeux de la recherche sur les interactions fondamentales ?
L’INTERACTION ÉLECTROMAGNÉTIQUE (FORCE ÉLECTROMAGNÉTIQUE)
L’interaction électromagnétique régit tous les phénomènes électriques et magnétiques. Elle peut être attractive ou répulsive : par exemple, deux pôles d’aimants de même signe (« nord » ou « sud ») vont se repousser alors que deux pôles d’aimants de signe opposé vont s’attirer.
Cette interaction est liée à l’existence de charges électriques et est notamment responsable de la cohésion des atomes en liant les électrons (charge électrique négative) attirés par le noyau de l’atome (charge électrique positive).
Le photon est la particule élémentaire associée à l’interaction électromagnétique. Il est de charge électrique nulle et sans masse, ce qui fait que cette interaction a une portée infinie.
J.C. Maxwell écrit, vers 1864, la théorie de l’électromagnétisme qui explique l’existence d’ondes électromagnétiques (ondes radio, infra-rouge, lumière, ultra-violet, rayons X et gamma). Leur importance n’est plus à démontrer. Dans la seconde moitié du XXe siècle, cette théorie a été reformulée grâce notamment aux travaux du physicien Feynman sous la forme de l’électrodynamique quantique pour y introduire les concepts quantiques de façon cohérente et qui décrit l’interaction comme un échange de photons.
L’INTERACTION FAIBLE (FORCE FAIBLE)
L’interaction faible est la seule qui agit sur toutes les particules, excepté sur les bosons. Responsable de la radioactivité Bêta, elle est donc à l’origine de la désintégration de certains noyaux radioactifs.
Le rayonnement Bêta est un rayonnement émis par certains noyaux radioactifs qui se désintègrent par l'interaction faible. Le rayonnement β+ (β-) est constitué de positons (électrons) et se manifeste lorsqu’un proton (neutron) se transforme en neutron (proton). Un neutrino (antineutrino) électronique est également émis. Ce rayonnement est peu pénétrant : un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent pour l’arrêter.
Les particules élémentaires associées à l’interaction faible sont le boson neutre (le Z0) et les deux bosons chargés (les W+ et W−). Ils ont tous une masse non nulle (plus de 80 fois plus massifs qu’un proton), ce qui fait que l’interaction faible agit à courte portée (portée subatomique de l’ordre de 10-17 m).
La datation au carbone 14 est possible grâce à l’interaction faible. Le carbone 14 est un isotope radioactif du carbone qui se transforme en azote 14 par désintégration Bêta moins. Sa période radioactive, temps au bout duquel la moitié de ses atomes s’est désintégrée, est de 5 730 ans. La technique du carbone 14 permet de dater des objets de quelques centaines d’années à 50 000 ans environ.
Le neutrino
Le neutrino, particule élémentaire du modèle standard, n’est sensible qu’à l’interaction faible. Le neutrino est un lepton du modèle standard de la physique pouvant prendre trois formes (ou saveurs) : le neutrino électronique, muonique et tauique. Les neutrinos n'ont pas de charge électrique et ont une masse très faible dont on connaît seulement une borne supérieure. Ils se transforment périodiquement les uns en les autres selon un processus appelé "oscillation des neutrinos". N'étant sensibles qu'à l'interaction faible, les neutrinos n'interagissent que très peu avec la matière si bien que pour absorber 50 % d'un flux de neutrinos, il faudrait lui opposer un mur de plomb d'une année-lumière d'épaisseur. >> En savoir plus sur les neutrinos
Vidéo
Le modèle standard
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
L’INTERACTION NUCLÉAIRE FORTE OU INTERACTION FORTE (FORCE FORTE)
L’interaction forte permet la cohésion du noyau de l’atome. Elle agit à courte portée au sein du proton et du neutron. Elle confine les quarks, particules élémentaires qui composent les protons et neutrons, en couples "quark−antiquark" (mésons), ou dans des triplets de quarks (un ou deux autres (anti) quarks) (baryons). Cette interaction se fait par l'échange de bosons appelés "gluons".
Le gluonest la particule élémentaire liée à l’interaction forte. La charge associée à cette interaction est la "charge de couleur". Lors de l'échange d'un gluon entre deux quarks, ils intervertissent leurs couleurs. L’interaction entre deux quarks est attractive et d’autant plus intense que ceux-ci sont distants l’un de l’autre, et est quasi nulle à très courte distance.
La réaction primordiale de fusion de deux protons en deutéron (un isotope naturel de l’hydrogène dont le noyau contient un proton et un neutron) est un processus dû à l’interaction faible dont le taux gouverne la lente combustion des étoiles. C’est ensuite l’interaction forte qui est à l’œuvre dans les chaînes de réactions nucléaires qui suivent et qui produisent d’autres noyaux.
Cette interaction est notamment responsable des réactions nucléaires qui ont lieu au sein du Soleil.
réaction de fusion nucléaire
Les quarks portent une charge de couleur qui est à l’interaction forte ce que la charge électrique est pour la force électromagnétique. Un quark peut avoir trois couleurs, appelées par convention rouge, bleu et vert. Un antiquark a l’une des « anticouleurs » correspondantes : antirouge, antibleu et antivert.
Les quarks forment des particules composites « blanches », c’est-à-dire sans charge de couleur. Il y a deux manières de former ces hadrons : soit en combinant un quark et un antiquark dont la couleur et l’anticouleur s’annulent (par exemple rouge et antirouge) ; on parle alors de « méson ». Soit en associant trois quarks porteurs chacun d’une couleur différente ; de telles particules sont appelées « baryons » – par exemple le proton et le neutron.
L'INTERACTION GRAVITATIONNELLE (FORCE GRAVITATIONNELLE)
Dans la vision de la loi de la gravitation universelle de Newton, l’interaction gravitationnelle est celle qui agit entre des corps massifs. La force est attractive. La pesanteur et les mouvements des astres sont dus à la gravitation.
Dans le cadre de la relativité générale, la gravitation n’est pas une force mais une manifestation de la courbure de l’espace-temps. La gravitation ne fait pas partie du modèle standard, elle est décrite par la relativité générale. Elle se définit par la déformation de l’espace-temps.
La gravitation est la plus faible des quatre interactions fondamentales. Elle s'exerce à distance et de façon attractive entre les différentes masses. Sa portée est infinie.
La première théorie la décrivant efficacement est celle de Newton en 1687. Pesanteur, mouvements planétaires, structure des galaxies sont expliqués par la gravitation. En 1915, elle est remplacée par la théorie de la relativité générale d’Einstein qui sert de cadre à la description de l’Univers entier et où les masses déforment l’espace-temps au lieu d’y exercer des forces à distance.
Vidéo
Les principes clefs de la physique - #1 principe de relativité
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
A ce jour, on ne sait pas décrire l’interaction gravitationnelle par la mécanique quantique, et on ne lui connaît aucun boson médiateur. Au niveau théorique, la gravitation pose problème car on ne sait pas la décrire à l’aide du formalisme de la « théorie quantique des champs », utilisé avec succès pour les trois autres interactions. L’hypothétique graviton serait la particule médiatrice de la gravitation dans une description quantique de cette interaction.
PORTÉE DE L'INTERACTION ENTRE DEUX CORPS
La masse du boson vecteur (ou médiateur) va définir la portée de l’interaction. Imaginez deux particules en interaction comme deux personnes se lançant une balle, représentant le boson vecteur : plus la balle est légère, plus ils peuvent la lancer loin. Par analogie, plus le boson vecteur est léger, plus la portée de l’interaction est grande.
* Force forte - Particules médiatrices (boson vecteurs) : gluons ; Domine dans : noyau atomique
* Force électromagnétique - Particules médiatrices (boson vecteurs) : photons - Domine dans : électrons entourant le noyau
* Force faible - Particules médiatrices (bosons vecteurs) : Boson Z0, W+, W- - Domine dans : Désintégration radioactive bêta
* Gravitation - Particules médiatrices (bosons vecteurs) : Graviton ? (pas encore observé) - Domine dans : Astres .
LA THEORIE DU TOUT : VERS L’UNIFICATION DES INTERACTIONS FONDAMENTALES ?
L’objectif des recherches est de trouver une théorie qui expliquerait simultanément les quatre interactions fondamentales.
L’unification des quatre interactions fondamentales fait partie des axes de recherche principaux de la physique des particules. Une première étape a été franchie il y a une trentaine d’années avec l’unification de l’interaction faible et de la force électromagnétique dans un même cadre : l’interaction électrofaible. Celle-ci se manifeste à haute énergie – environ 100 GeV. La suite logique de ce processus est d’y ajouter l’interaction forte. Mais, si convergence il y a, elle ne devrait se manifester qu’à des échelles d’énergie encore bien plus élevées (1015 ou 1016 GeV), totalement hors de portée des expériences actuelles. L’étape ultime, l’ajout de la gravité à ce formalisme, est encore plus éloignée et se heurte à des problèmes mathématiques non résolus pour le moment.
La théorie des cordes et la théorie de la gravitation quantique à boucles sont les deux cadres théoriques les plus étudiés aujourd’hui.
Les théories de dimensions supplémentaires, dont la théorie des cordes, ont été initialement proposées pour résoudre le problème de l’extrême faiblesse de la gravité. L’une des réponses serait que seule une petite fraction de la force gravitationnelle n’est perceptible, le reste agissant dans une ou plusieurs autres dimensions. Ces dimensions, imperceptibles, seraient courbées et non plates comme les quatre connues de l’espace et du temps.
Les cordes seraient des petits brins d’énergie en vibration qui seraient reliées dans plusieurs « branes » (des cordes qui se seraient étirées et transformées en grandes surfaces). Les branes seraient comme des barrières entre plusieurs dimensions, jusqu’à 10, mais ces dimensions supplémentaires nous sont invisibles.
Toute la physique fondamentale serait unifiée, c’est-à-dire la mécanique quantique avec la relativité générale.
La gravité quantique à boucles a pour but de quantifier la gravitation. Elle a notamment pour conséquences que le temps et l’espace ne sont plus continus, mais deviennent eux-mêmes quantifiés (il existe des intervalles de temps et d’espace indivisibles). La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter.
Cependant, à ce jour, aucune théorie unique ne peut expliquer de façon cohérente toutes les interactions.
Notions clés
* Interactions fondamentales et particules élémentaires : chacune des trois interactions fondamentales décrites par le modèle standard, à savoir l’interaction électromagnétique, l’interaction faible et l’interaction nucléaire forte - est associée à une ou plusieurs particule(s) élémentaire(s), les bosons. Ainsi, l’interaction forte est véhiculée par les gluons ; le photon transmet l’interaction électromagnétique tandis que les trois autres bosons sont responsables de l’interaction faible.
* Spectre électromagnétique : le spectre du rayonnement électromagnétique s’étend des ondes radio aux rayons gamma en passant par les micro-ondes, l’infrarouge, la lumière visible, l’ultraviolet et les rayons X. Ce sont tous des rayonnements électromagnétiques qui ne différent que par la fréquence de l’onde. Pour en savoir plus, consulter L'essentiel sur les ondes électromagnétiques.
* Le graviton est une particule hypothétique de la famille des bosons, médiateur de l'interaction gravitationnelle. Il s'agirait d'une particule de masse nulle, de charge électrique nulle et de spin égal à 2.
DOCUMENT cea LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante |
|
|
|
|
|
|