ecole de musique piano
     
menu
 
 
 
 
 
 

Variabilité comportementale et vie sociale chez un organisme unicellulaire

 

 

 

 

 

 

 

Variabilité comportementale et vie sociale chez un organisme unicellulaire

jeudi 1 janvier 2015

Beaucoup d’animaux présentent, tout comme les humains, des comportements différents et ne réagissent pas tous de la même manière face aux informations environnementales et sociales. Toutefois, l’intégralité de ces recherches a été consacrée à des organismes relativement complexes et multicellulaires. Audrey Dussutour et David Vogel au Centre de recherche sur la cognition animale, démontrent pour la première fois que des différences comportementales sont déjà manifestes chez un organisme unicellulaire, Physarum Polycephalum, lointain parent des animaux, des champignons et des plantes. Cet organisme peut présenter des types comportementaux distincts : « lent-social », « rapide-social » et « rapide-asocial ». Ces résultats sont publiés dans la revue Proceedings of The Royal Society B.

Les différences comportementales sont observées à tous les échelons de l’organisation du vivant : entre individus au sein d’un groupe, entre groupes au sein d’une population et entre populations au sein d’une espèce. De nombreuses études à ce sujet, chez des espèces multicellulaires, ont montré que ces différences comportementales ont un impact majeur sur l’évolution et l’écologie de ces organismes. A l’inverse, la variabilité comportementale chez des organismes unicellulaires est très peu documentée. Pourtant une bonne compréhension de cette variabilité semble cruciale pour appréhender pleinement la variabilité observée chez des organismes plus complexes. Afin de pallier ce manque, les chercheurs ont choisi d’étudier la variabilité comportementale chez un organisme unicellulaire Physarum polycephalum. P. polycephalum est une cellule géante (ou plasmode) extrêmement mobile pouvant atteindre plusieurs mètres carrés et une vitesse de déplacement de 4cm à l’heure. Les chercheurs ont choisi de travailler avec 3 souches de la même espèce : une souche australienne, une souche japonaise et une souche américaine.

Dans une première série d’expériences, les chercheurs ont quantifié le comportement de P. polycephalum dans un environnement dépourvu de nourriture. Les résultats mettent en évidence que les cellules peuvent être regroupées dans des sous-types comportementaux distincts. Les cellules australiennes se déplacent lentement dans toutes les directions, les cellules japonaises progressent rapidement dans toutes les directions et les cellules américaines se déplacent rapidement dans une direction unique.
Ensuite, les chercheurs ont observé le comportement de P. polycephalum lorsqu’une source de nourriture ou des informations sociales sont présentes dans l’environnement. Les informations sociales correspondent à l’ensemble des molécules excrétées par une cellule dans son environnement lorsque celle-ci se nourrit. Les résultats montrent une nouvelle fois des différences comportementales manifestes entre les souches. Les cellules australiennes et japonaises préfèrent se déplacer vers les informations sociales plutôt que vers la nourriture, contrairement aux cellules américaines qui préfèrent se déplacer vers la nourriture plutôt que vers les informations sociales. Les chercheurs sont parvenus à identifier le calcium comme élément responsable de l’attraction sociale en utilisant une approche associant l’étude éthologique fine du comportement des cellules à des analyses chimiques. Les chercheurs ont pu déterminer que les cellules australiennes sécrètent de grandes quantités de calcium et sont capables de détecter de faibles concentrations de calcium dans l’environnement. A l’inverse, les cellules américaines sécrètent peu de calcium et sont peu sensibles au calcium présent dans l’environnement. Les cellules japonaises se situent dans une position intermédiaire.

Une dernière série d’expériences, dans laquelle deux cellules sont mises en présence de deux sources de nourriture identiques, montre que les cellules manifestent des stratégies sociales différentes. Les cellules australiennes exploitent la même source de nourriture tandis que les cellules japonaises et américaines choisissent aléatoirement une des deux sources de nourriture. De plus, les cellules australiennes trouvent plus facilement la nourriture lorsqu’elles sont accompagnées d’un congénère que lorsqu’elles sont seules dans l’environnement, indiquant un phénomène de facilitation sociale. A l’inverse, les cellules américaines, en présence d’un congénère, sont ralenties dans leur découverte de la nourriture. L’élaboration d’un modèle mathématique reproduisant la dynamique d’interactions entre deux cellules a permis aux chercheurs de démontrer les mécanismes responsables de ces stratégies sociales, d’une part leur vitesse de déplacement et d’autre part leur niveau d’attraction pour les informations sociales.
Ainsi, ces résultats prouvent l’existence de types comportementaux même chez les organismes unicellulaires et permettent d’enrichir le répertoire comportemental de P. polycephalum. Audrey Dussutour et ses collaborateurs montrent, une fois de plus, que les comportements complexes ne résultent pas obligatoirement de procédés neuronaux sophistiqués mais que des formes de vie plus simples sont aussi capables de présenter des comportements étonnants.


Figure 1: Déplacement des cellules des différentes souches de P. polycephalum dans un environnement dépourvu de nourriture. Les cellule australiennes et japonaises s’étendent dans toutes les directions, tandis que les cellules américaines poussent principalement de façon digitée.

Figure 2: Choix des cellules de chaque souche entre les informations sociales et la nourriture. Les cellules australiennes et japonaises se déplacent vers les informations sociales tandis que les cellules américaines choisissent la nourriture.
_

Figure 3: Les cellules australiennes exploitent la même source de nourriture lorsqu’elles sont mises en présence de deux sources de nourriture identiques.
© Audrey Dussutour
Références :
*         Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour. 
David Vogel, Stamatios C. Nicolis, Alfonso Perez-Escudero, Vidyanand Nanjundiah, David J. T. Sumpter,Audrey Dussutour. 
Proc. R. Soc. B 2015 282 20152322; DOI: 10.1098/rspb.2015.2322.
Contacts :
*         Audrey Dussutour Centre de Recherches sur la Cognition Animale
CNRS UMR 5169 CNRS, Université Toulouse III 
Bâtiment 4R3, Porte 220
118 route de Narbonne
31062 ToulouseTel : 05 61 55 64 41


 DOCUMENT         CNRS         LIEN 
 

 
 
 
 

ACTINE

 

 

 

 

 

 

 

Actine

L'actine est une protéine bi-globulaire de 5,46 nm de diamètre qui joue un rôle important dans l'architecture et les mouvements cellulaires [EN]. Elle est présente dans toutes les cellules du corps (c’est une protéine ubiquitaire), mais elle est particulièrement abondante dans les cellules musculaires. Elle peut représenter jusqu'à 15 % de la masse totale protéique des cellules. Cette protéine a été hautement conservée lors de l'évolution des eucaryotes, puisque l'identité entre un isotype d'actine humaine et l'actine de levure (S. cerevisiae) est supérieure à 90 %. La plupart des cellules eucaryotes possèdent de nombreux gènes d'actine codant des protéines légèrement différentes1,2.


        Notes et références Structure
L'actine est une protéine dont le diamètre est de 5,46 nm. Elle est constituée par un polypeptide de 375 acides aminés qui contient un acide aminé, l'histidine, ayant subi une modification post-traductionnelle rare : la 3-méthylhistidine. La détection de 3-méthylhistidine dans l'urine est le signe de nécrose cellulaire à la suite d'une blessure musculaire.
Chez les mammifères, il existe 6 isotypes d'actine :
* 3 isoformes d’actines alpha (présentes dans les muscles striés squelettiques, cardiaque et dans les muscles lisses) ;
* 2 isoformes d’actines gamma (présentes dans le muscle lisse entérique et dans les tissus non musculaires, au niveau des stéréocils (microvillosités) de la cellule auditive sensorielle) ;
* 1 isoforme d’actine beta (non-musculaire).
Dans la cellule, on la retrouve sous deux formes :
* actine G (globulaire), forme monomérique soluble en solution aqueuse.
* Le monomère d'actine G est associé à un cation divalent tel que l'ion calcium ou le magnésium (le magnésium in vivo) et un nucléotide de type ATP ou ADP selon l'état de phosphorylation du nucléotide. En l'absence de ces deux cofacteurs, l'actine se dénature facilement. La thymosine bloque la polymérisation en s'associant aux monomères d'actine G liée à l'ATP ;
* actine F (filamenteuse) ou microfilament, de 8 nm de diamètre et qui est un polymère d'actine G.
* Ce filament est un arrangement hélicoïdal dextre, avec un tour d'hélice comportant 13 monomères et d'une longueur de 37 nm.
La cytochalasine B (en) est une mycotoxine qui inhibe la formation des microfilaments d'actine.

Polymérisation
Article détaillé : Filament d'actine.

Elle commence par une phase dite de nucléation pendant laquelle des dimères, trimères, ou tétramères (selon le processus de nucléation utilisé) d'actine (appelés noyaux) s'assemblent. Cette étape, défavorable thermodynamiquement, est une étape lente. Dans le contexte cellulaire, l'existence de nucléateurs de l'actine accélère cette étape et la rend de ce fait compatible avec les échelles de temps et d'espaces des processus biologiques cellulaires. On distingue 3 groupes de nucléateurs : le complexe Arp2/3 (complexe composé de 7 sous unités protéiques), les formines, et les nucléateurs dit « atypiques » comme la protéine Spire. Si la concentration en monomères d'actine (actine dite G) est supérieure à une concentration critique, l'actine G s'assemble en filaments à partir des noyaux préformés. C'est l'étape d'élongation des filaments. Cette étape rapide est souvent appelée phase de polymérisation, bien que l'actine filamenteuse (dite actine-F) ne soit pas un véritable polymère (les monomères ne sont pas liés entre eux par une liaison covalente au sein d'un filament). Une fois formés, les filaments d'actine sont à l'équilibre entre dissociation des filaments aux extrémités (-) et association de monomères aux extrémités (+). Dans les cellules, la formation spontanée de noyaux d'actine est très défavorable.

Localisation et rôle


Dans la contraction musculaire, l'actine polymérisée se lie à une autre protéine, la myosine. Cette dernière s'accroche au polymère d'actine et la fait coulisser par rapport à elle; à l'autre bout du filament de myosine, un autre filament d'actine procède de façon symétrique ; les deux filaments d'actine se rapprochent donc l'un de l'autre, c'est la contraction musculaire.

Autres rôles :
* anneau contractile des cellules en division lors de la cytodiérèse permettant de séparer les cellules issues de la mitose (ou de la méiose) ;
* maintien de l'intégrité tissulaire par l'association des microfilaments avec la ceinture de desmosomes appelée jonction adhérente au pôle apical des cellules épithéliales ;
* maintien des microvillosités des cellules épithéliales intestinales ;
* émission de filopodes et de lamellipodes qui permettent à la cellule de s'allonger dans une direction donnée ce qui permet la migration cellulaire ou la prise de proies (chez les amibes et les cellules phagocytaires du système immunitaire comme les macrophages). Dans le cas de la migration cellulaire, les microfilaments d'actine se lient à des points d'adhésion focaux qui servent de points d'appui sur la matrice extracellulaire, nécessaires pour avancer. Ce sont les protéines associées aux intégrines qui se lient à l'actine ;
* création de filaments d'actine nécessaires à la reproduction par bourgeonnement de la levure Saccharomyces cerevisiae3.
Des parasites intracellulaires tels que Listeria sont capables de détourner la machinerie cellulaire qui contrôle la polymérisation de l'actine pour former des microfilaments derrière eux, ce qui permet de les propulser.

Voir aussi[modifier | modifier le code]
* ACTA2, l'une des isoformes de l'actine alpha
* Troponine
* Tropomyosine
* Complexe Arp2/3
Notes et références[modifier | modifier le code]
1. ↑ Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC, « The evolution of compositionally and functionally distinct actin filaments », Journal of Cell Science, vol. 128, no 11,‎ 2015, p. 2009–19 (PMID 25788699, DOI 10.1242/jcs.165563).
2. ↑ Ghoshdastider U, Jiang S, Popp D, Robinson RC, « In search of the primordial actin filament. », Proc Natl Acad Sci U S A., vol. 112, no 30,‎ 2015, p. 9150-1 (PMID 26178194, DOI 10.1073/pnas.1511568112).
3. ↑ Actin cable dynamics in budding yeast (Hyeong-Cheol Yang and Liza A. Pon) http://www.pnas.org/content/99/2/751.short [archive].

 

 DOCUMENT      wikipédia    LIEN    
 

 
 
 
 

La cellule, le patrimoine génétique

 

 

 

 

 

 

 

La cellule, le patrimoine génétique


La brique élémentaire de tous les êtres vivants est la cellule. Elle renferme en son sein une molécule qui porte son patrimoine génétique.

Publié le 25 janvier 2018
       
Les êtres vivants ont pu s’adapter à tous les milieux et coloniser l’ensemble des écosystèmes marins et terrestres ! Que ce soit une bactérie, un homme, un lichen ou une sauterelle, tous les organismes ont quelque chose en commun : la cellule. Autonome, elle vit, se reproduit et meurt.

AU CŒUR DE LA CELLULE
Les cellules sont les plus petites unités du vivant. Pour les voir, il suffit d’un microscope car une cellule animale mesure en moyenne 20 micromètres. Elles se classent en deux types : les procaryotes et les eucaryotes. Les premières, de simples poches de liquide contenant des biomolécules, délimitées par une membrane et ne comportant pas de noyau, sont dites “ primitives ”. Les bactéries sont les principaux représentants de cette confrérie. Les cellules eucaryotes sont plus organisées, avec différents compartiments ayant chacun un rôle à jouer, comme le noyau.


*         1 - Le noyau : centre de contrôle de la cellule. Il contient le matériel génétique sur lequel est inscrit le mode d'emploi de tout organisme. Chaque cellule utilise le génome d'une façon différente. Elle a son propre mode d'emploi.

*         2 - Les lysosomes : centres de recyclage. Ce sont de petits sacs qui concentrent les substances à détruire et les enzymes nécessaires à cette destruction.

*         3 - Les ribosomes : usines de production des protéines. Ils synthétisent des protéines à partir des instructions données par le noyau.

*         4 - L'appareil de Golgi : centre de tri. Dans ces sacs empilés les uns sur les autres s'achève la préparation de protéines synthétisées dans la cellule en vue de leur exportation.

*         5 - Le cytoplasme : agora de la cellule. Délimité par la membrane plasmique, le cytoplasme est constitué d'eau et de biomolécules et contient les divers organites cellulaires (noyau, mitochondries…).

*         6 - Les mitochondries : centrales énergétiques. Elles sont le siège de la respiration cellulaire et de la production d'énergie.



L’Homme est composé de 5 000 à 30 000 milliards de cellules.


* Au sein d’un organisme, les cellules peuvent avoir des formes et des fonctions différentes mais elles contiennent toutes, dans leur noyau, les mêmes informations génétiques, le même patrimoine. Chez les eucaryotes pluricellulaires, les cellules sont réunies en tissus. Un tissu est composé de plusieurs types de cellules avec des fonctions bien distinctes, mais il y a souvent un type cellulaire prédominant remplissant la même fonction, comme les hépatocytes dans le foie.
*
* Différents tissus peuvent s’associer pour former un organe et plusieurs organes peuvent contribuer à une même grande fonction physiologique. Les cellules germinales sont fabriquées par l’appareil reproducteur. De l’union du patrimoine génétique d’un spermatozoïde et de celui d’un ovule naîtra un nouvel individu. Les cellules de l’œuf se multiplieront et se différencieront pour produire les centaines de lignées de cellules spécialisées, dites somatiques, qui constitueront la peau, le cerveau, le tube digestif… de ce nouvel individu.
*
* D’après la découverte de fossiles de stromatolithes1 dans les lagunes australiennes, la vie aurait commencé sur Terre il y a 3,5 milliards d’années. De la bactérie unicellulaire à l’Homme, composé de pas moins de 30 000 milliards de cellules, le Vivant n’a cessé d’innover !
*
1 : Stromatolithes : constructions fossiles, formées en général par des cyanobactéries (algues bleues), qui existent encore à l'heure actuelle.

La mitose, une division cellulaire

Chez l'Homme, les cellules souches (indifférenciées) et les cellules somatiques (différenciées et spécialisées) se multiplient par mitose pour donner deux cellules identiques, dites diploïdes, contenant 23 paires de chromosomes. Les cellules germinales (cellules sexuelles ou gamètes), quant à elles, doivent subir deux divisions successives (méiose) pour donner des cellules, dites haploïdes, avec un seul exemplaire de chacun des 23 chromosomes. Lors de la fécondation, les deux gamètes fusionnent pour générer un œuf diploïde. Le mélange de 50 % du patrimoine de la mère avec 50 % du patrimoine du père est appelé brassage génétique. La reproduction sexuée augmente la biodiversité et par conséquent le potentiel adaptatif de l'espèce.  

LE CYCLE CELLULAIRE
En 24 heures, depuis sa naissance jusqu’à sa division ou sa mort, une cellule suit un cycle de 4 phases.

*         La première, notée G1, correspond à sa croissance. Pendant ce temps, plus ou moins long, la cellule exerce ses fonctions ordinaires sans produire de nouvel ADN.
*         La seconde étape, S, est celle de la synthèse de l’ADN et de la réplication chromosomique.
*         Lors de la phase G2, la cellule s’assure que la réplication s’est bien passée.
*         Puis elle déclenche la dernière phase, celle de la division cellulaire.


L'ADN
Histoire de lu vivant et de l'ADN

L’enquête a commencé au siècle des Lumières par des observations macroscopiques sur la biodiversité. Les explorateurs rapportent de nouvelles espèces que Carl Von Linné, Georges Cuvier et Georges Buffon nomment et classent selon les caractères propres à chacune (nombre de membres, bipédie,
poils, plumes…). Puis Jean-Baptiste de Lamarck invente la biologie ; il est le premier à comprendre que les espèces évoluent. Au XIXe siècle, Charles Darwin émet l’idée qu’un caractère possède une certaine variabilité au sein d’une
population et que la sélection naturelle conserve les variations les plus favorables, dans un contexte donné ou un environnement spécifique.

En 1866, dans le potager de son abbaye, le moine Gregor Mendel découvre que certains caractères sont héréditaires : c’est la naissance de la génétique.
En 1952, la scientifique Rosalind Franklin parvient à “ photographier ” une molécule d’ADN et émet l’hypothèse de sa structure en double hélice. La reprise de ces travaux par Francis Crick et James Watson ouvre la voie à la biologie moléculaire.
    
L'ADN, vecteur de l'hérédité
Le noyau, de forme sphérique, est l'organite le plus volumineux de la cellule. Ses 5 micromètres de diamètre permettent de l’observer en microscopie optique. Une goutte de vert de méthyl suffit à révéler son principal constituant, l’Acide DésoxyriboNucléique (ADN). C'est la molécule support du patrimoine génétique de tout être vivant. La longue chaîne d’ADN est composée d'une succession de nucléotides (contenant des bases) accrochés les uns aux autres par des liaisons phosphodiester. Les 4 bases qui composent l’alphabet du programme génétique sont A, T, G et C.
 
La molécule d’ADN en version 3D est un assemblage de deux chaînes hélicoïdales (ou brins) s’enroulant autour d’un axe. Cette double hélice est maintenue grâce aux liaisons hydrogène entre les bases qui se font face. Ces bases, dites complémentaires (A s’apparie avec T et C avec G) forment comme les barreaux d’une échelle. Les deux brins d’un ADN donnent donc la même information, comme une photo et son négatif.

Dans les gènes, une suite de trois lettres forme un mot, ou codon. Les mots forment des phrases ou des instructions qui sont à l’origine des caractères héréditaires. La plupart du génome reste non lisible.

Deux êtres humains qui n'ont aucun lien de famille ont 99,9 % d'ADN en commun.

LES CHROMOSOMES, SUPPORTS MATÉRIELS DES GÈNES

Caryotype d'une cellule humaine, par hybridation en fluorescence. © Steven M.Carr
Au moment de la division cellulaire, l’ADN se compacte autour de protéines et s’organise en bâtonnets visibles, les chromosomes. Chaque espèce possède un nombre constant et spécifique de chromosomes : 46 pour l’Homme, 24 pour le riz, 8 pour la mouche… Chez la bactérie, il n’y en a qu’un et il est circulaire ! Si la cellule est stoppée pendant sa division, il est possible de réaliser un caryotype, sorte d’instantané de ses chromosomes. Ceux-ci sont découpés puis classés selon une numérotation internationale. Par exemple, un caryotype sert à identifier le sexe d’un individu (chromosome 23 XX - femelle ou XY - mâle) ou à détecter certaines anomalies, comme la trisomie 21 (3 copies du chromosome 21).

Un chromosome humain débobiné mesure un mètre d’ADN ! Sur ce mètre étalon, certaines fractions sont des instructions qui commandent la synthèse de protéines ; ce sont les gènes. Unités de base de l’hérédité, ils déterminent ce que nous sommes et comment nous fonctionnons (couleur des yeux, groupe sanguin…).

LE COMPLEXE DU GÉNOME
Organisme    Nombre de chromosomes    Taille du génome en millions de bases    Nombre de gènes
Homme    46    3300     21000
Riz    24    430    37000
Mouche    8    165    13000

Un organisme complexe, comme l'Homme, a-t-il un plus gros génome et plus de gènes qu'un organisme " moins évolué " ?

C'est globalement vrai quand on compare les procaryotes (bactéries) aux eucaryotes (plantes, animaux…). Cependant, chez les eucaryotes, le paradoxe existe. L'Homme a à peine deux fois plus de gènes que la mouche et moins qu'un grain de riz ! Il n'existe pas de relation entre la complexité d'un organisme et le nombre de gènes ou la taille de son génome.

LES GÈNES
Il existe environ 21 000 gènes chez l'Homme. La plupart des gènes codent pour des protéines qui jouent un rôle particulier dans notre organisme. Certaines participent au transport, à la signalisation cellulaire… D'autres, comme les enzymes, réalisent des réactions chimiques. Deux étapes sont nécessaires à leur fabrication : la transcription et la traduction.

1 - La transcription
Pour fabriquer une protéine, le gène va transmettre son mode d'emploi du noyau au cytoplasme grâce à une molécule navette, l'ARN messager (ARNm). Pour cela le gène est transcrit en un ARNm qui est sa copie exacte ; à un détail près : la base T est remplacée par une base spéciale, la base uracile (U). Les ARNm sont transformés pour enlever des parties non-codantes.

2- La traduction
Une fois dans le cytoplasme, l'ARNm va rejoindre les usines à protéines, les ribosomes. Dans celles-ci seront assemblés les constituants de base d'une protéine, les acides aminés selon la séquence donnée par l'ARNm. Mais comment passer d'un alphabet de 4 lettres (A, U, C, G) à une protéine ? Chaque acide aminé correspond à un ou plusieurs codons. Un troisième acteur, l'ARN de transfert (ARNt), reconnaît spécifiquement le codon de l'ARNm qui correspond à l'acide aminé qu'il porte. Ainsi, le ribosome glisse le long de la séquence de l'ARNm, et assemble les acides aminés apportés au fur et à mesure par les ARNt. Le ruban protéique se replie au cours de sa synthèse pour prendre in fine une conformation tridimensionnelle qui lui confère ses propriétés et sa fonction.


LES ALLÈLES
Chez l’Homme, les chromosomes vont par paire ! Pour chaque paire, ils sont identiques, portent les mêmes gènes. Cependant, il peut y avoir plusieurs versions, ou allèles, d’un même gène. Les combinaisons de deux allèles identiques ou différents donnent le génotype de l’individu. Par exemple, pour déterminer le groupe sanguin, il existe 3 versions du gène : l’allèle A, B et O ; ce qui donne AA, AB, AO, BB, BO ou OO. A et B sont dominants sur O ; A et B sont co-dominants et O est récessif. Le génotype AA donnera le phénotype [A]

Le génotype AB donnera le phénotype [AB]
Le génotype AO donnera le phénotype [A]
Le génotype BO donnera le phénotype [B]
Le génotype OO donnera le phénotype [O]
Le génotype BB donnera le phénotype [B]

Les phénotypes sont le résultat de l’expression des génotypes.


Chez les procaryotes, dont les cellules sont dépourvues de noyau, plus de 90 % du génome codent pour une protéine. Chez les eucaryotes, ce sont seulement 2 %. Les 98 % restants ont été longtemps appelés à tort “ ADN poubelle ” ; leur rôle n’est pas encore complètement élucidé, mais une partie servirait à réguler les gènes.

La déclinaison d'un gène ou comment conjuguer les allèles
Quand vous verrez un chat à 3 couleurs, pariez avec vos amis que c’est une femelle ! Vous gagnerez à tous les coups.

Explications : Les gènes sont à l’origine des caractères héréditaires comme la couleur du pelage des chats. Il existe plusieurs versions d’un gène que l’on appelle allèles.

Dans notre exemple, l’allèle redo confère la couleur orange et red° la couleur noire. Chaque gène, porté par les deux chromosomes d’une même paire, existe donc en deux exemplaires, une combinaison de 2 allèles qui détermine le génotype. Chez les chats, le gène de la couleur du poil est porté par le chromosome sexuel “ X ”. Un mâle (XY) ne possède qu’un seul chromosome X. Il ne peut donc exprimer qu'un seul a

llèle ; il est redo (orange) ou red° (noir). Une femelle (XX), quant à elle, présente une des 3 combinaisons d’allèles ou génotypes possibles : redo/redo, redo/red° ou red°/red° ; le phénotype couleur du pelage [noir et orange] n’apparaît donc que chez la femelle.


Génotype, phénotype chez le chat. © Victoria Denys/CEA

 

    DOCUMENT     cea         LIEN

 
 
 
 

La maladie d’Alzheimer

 


 

 

 

 

 

La maladie d’Alzheimer

Publié le 2 juin 2017

Principale cause de démence chez les personnes âgées, la maladie d’Alzheimer affecte le cerveau, engendrant des pertes progressives des capacités intellectuelles. Les neurones sont progressivement détruits, avec pour conséquences des pertes de la mémoire, des fonctions cognitives, et des troubles du comportement. Les causes de la maladie sont encore mal connues aujourd’hui mais l’âge est le principal facteur de risque de la maladie, celle-ci se manifestant essentiellement après 65 ans. À l’échelle mondiale, 30 millions de personnes sont touchées, et les scientifiques anticipent un essor de cette maladie lié à l’allongement de la durée de vie et au vieillissement de la population en résultant.

UNE MALADIE
QUI ATTAQUE LES NEURONES
La maladie d’Alzheimer entraîne une perte des neurones dans différentes régions du cerveau. Elle se caractérise par le développement de deux types de lésions cérébrales : les plaques amyloïdes qui touchent l’extérieur des neurones et les dégénérescences neurofibrillaires à l’intérieur des neurones.
*         Les plaques amyloïdes : Les neurones, cellules du cerveau, possèdent une protéine fixée dans leur membrane, qui peut être coupée en plusieurs morceaux. L’un d’eux, le peptide Aβ (pour « β amyloïde »), peut s’accumuler et former une plaque (dite « plaque amyloïde »). En situation normale, ces morceaux sont éliminés par l’organisme, ne leur laissant pas le temps de former ces plaques amyloïdes. Mais chez les patients atteints de la maladie d’Alzheimer, le peptide Aβ est formé en excès et mal éliminé, et des plaques amyloïdes apparaissent (environ 15 ans avant l’apparition des premiers symptômes de la maladie).
*        
*         Les dégénérescences neurofibrillaires : les neurones sont dotés d’un système de transport interne : les microtubules, qui permettent aux protéines de circuler dans la cellule, depuis le corps de la cellule jusqu’à son extrémité. Les protéines Tau permettent de maintenir cette sorte d’« autoroute cellulaire » praticable. Dans la maladie d’Alzheimer, les protéines Tau sont anormales et détruisent ce système de transport, entraînant ainsi la mort progressive des neurones.


ZOOM SUR..
Le neurone
Le cerveau est composé d’environ 100 milliards de neurones. Chaque neurone établit jusqu’à 10 000 contacts (« synapses ») avec les autres neurones. Ce sont ces « synapses » qui vont permettre l’échange d’informations dans le cerveau. Leur disparition entraîne une altération des facultés cognitives telles que la mémoire, le langage et le raisonnement.
Le neurone permet ainsi de recevoir et d’envoyer des signaux sous forme électrique et chimique. D’autres cellules cérébrales, les cellules gliales, jouent également un rôle très important : en plus de leur rôle classique de support, les chercheurs ont récemment découvert qu’elles participent activement à l’activité des « synapses ». Elles constituent ainsi un champ d’investigation nouveau dans la maladie d’Alzheimer.



ENJEUX :
COMPRENDRE LES ORIGINES
ET MÉCANISMES DE DÉVELOPPEMENT
DE LA MALADIE

Plus de 860 000 personnes sont touchées et 225 000 nouveaux cas sont diagnostiqués chaque année en France (30 millions de malades dans le monde) (source Inserm 2010). Avec l’allongement de la durée de vie et le vieillissement de la population, les chercheurs et médecins craignent un essor de cette pathologie. L’âge est en effet le principal facteur de risque : à 65 ans, elle touche 3% des femmes et 2,3% des hommes. Cela s’aggrave avec l’âge puisque 48% des femmes de plus de 90 ans, ainsi que 33% des hommes du même âge, sont atteints.
Il existe aussi un lien avec d’autres facteurs de risque comme l’hypertension artérielle, l’excès de cholestérol, ou le diabète. Des études génétiques ont aussi révélé que plusieurs mutations génétiques peuvent favoriser l’apparition de la maladie (facteurs de prédisposition).
Aujourd’hui, il n’existe pas de traitement contre la maladie d’Alzheimer. Depuis quelques années, avec les progrès scientifiques réalisés, les techniques d’imagerie font partie, avec les signes cliniques (pertes cognitives, démence…), des critères de diagnostic de la maladie sur un patient. Jusqu’alors, le diagnostic était basé uniquement sur les signes cliniques, confirmés par des analyses post mortem du cerveau. Les techniques actuelles d’imagerie ne permettent néanmoins qu’un diagnostic clinique relativement tardif pour l’instant.

R&D :
COMPRENDRE, DIAGNOSTIQUER, DÉPISTER

Compréhension de la maladie
Seul moyen de sonder le cerveau de manière non invasive, l’imagerie cérébrale est un outil incontournable pour comprendre la maladie d’Alzheimer et étudier son évolution. Les chercheurs emploient :
*         l’imagerie par résonance magnétique (IRM) afin de détecter des atrophies du cerveau et de préciser le diagnostic en éliminant d’autres causes de démences ;
*         la tomographie par émission de positons (TEP) afin de repérer d’éventuels troubles de fonctionnement du cerveau et de détecter les plaques amyloïdes.
*        
Les connaissances qu’ils produisent ainsi sont indispensables pour le développement de techniques de dépistages, de diagnostic et de traitement.

L’imagerie pour un diagnostic précoce
Les techniques actuelles d’imagerie cérébrale ne sont pas suffisamment performantes pour un diagnostic précoce de la maladie d’Alzheimer. Les améliorer relève de la prouesse scientifique, le cerveau étant l’un des organes les plus complexes et les moins accessibles de notre corps. L’élaboration de nouveaux protocoles d’imagerie cérébrale s’accompagne d’études menées en parallèle pour développer :
*         des agents de contraste spécifiques [1] : ceux-ci, contrairement aux autres agents de contrastes généralement utilisés, doivent par exemple franchir une barrière biologique naturelle présente autour du cerveau : la barrière hématoencéphalique ;
*         des techniques d’imagerie plus sensibles ou de meilleure résolution qui permettront de repérer finement les plaques amyloïdes et les dégénérescences neurofibrillaires, bien avant l’apparition des symptômes cliniques.

La piste génétique : dépistage et stratégie de traitement
L’identification de nouveaux gènes associés à la maladie d’Alzheimer permettra d’élargir le nombre des hypothèses de recherche sur les causes de cette pathologie. Les gènes identifiés permettent ainsi de mieux cerner le terrain individuel favorisant la survenue de la maladie d’Alzheimer. La connaissance de ces gènes aidera les chercheurs du monde entier à mieux appréhender les événements conduisant à la destruction des cellules nerveuses et à la perte des fonctions intellectuelles qui caractérise cette maladie. Cette étape est essentielle pour pouvoir identifier de nouvelles pistes de traitements curatifs dans la mesure où les médicaments actuels n’ont que des effets symptomatiques (agissant sur les symptômes, non sur l’origine de la maladie).

 

   DOCUMENT     cea         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon