ecole de musique piano
     
menu
 
 
 
 
 
 

LA PHYSIQUE QUANTIQUE (SERGE HAROCHE)

 

 

 

 

 

 

 

LA PHYSIQUE QUANTIQUE (SERGE HAROCHE)

"La théorie quantique, centrale à notre compréhension de la nature, introduit en physique microscopique les notions essentielles de superpositions d'états et d'intrication quantique, qui nous apparaissent comme "" étranges "" et contre-intuitives. Les interférences quantiques et la non-localité - conséquences directes du principe de superposition et de l'intrication - ne sont en effet pas observables sur les objets macroscopiques de notre expérience quotidienne. Le couplage inévitable de ces objets avec leur environnement détruit très vite les relations de phase entre les états quantiques. C'est le phénomène de la décohérence qui explique pourquoi autour de nous l'étrangeté quantique est généralement voilée. Pendant longtemps, superpositions, intrication et décohérence sont restés des concepts analysés à l'aide d'" expériences de pensée " virtuelles, dont celle du chat de Schrödinger à la fois mort et vivant est la plus connue. À la fin du XXe siècle, les progrès de la technologie ont rendu réalisables des versions de laboratoire simples de ces expériences. On peut maintenant piéger et manipuler des atomes et des photons un par un et construire des systèmes de particules suspendus entre deux états quantiques distincts qui apparaissent ainsi comme des modèles réduits de chats de Schrödinger. Au delà de la curiosité scientifique et du défi que constitue l'observation de l'étrangeté quantique pour ainsi dire in vivo, ces expériences éclairent la frontière entre les mondes classique et quantique et ouvrent des perspectives fascinantes d'applications. "


Texte de la 213ème conférence de l’Université de tous les savoirs donnée le 31 juillet 2000.
Une exploration au cœur du monde quantique par Serge Haroche
Cent ans de physique quantique
L’an 2000 marque le centenaire de la physique quantique. C’est en 1900 que Planck, pour comprendre les propriétés du rayonnement des corps chauffés, émit la fameuse hypothèse que les échanges d’énergie entre la matière et la lumière devaient se faire par quanta discrets, et non de façon continue. Einstein reprit cette notion de quanta cinq ans plus tard en montrant que la lumière elle-même était constituée de grains discrets, appelés par la suite photons, et en interprétant à l’aide de cette idée révolutionnaire l’effet photoélectrique, l’émission d’électrons par les métaux éclairés. Dans les vingt ans suivants, la théorie quantique, cherchant à comprendre le comportement de la nature à l’échelle atomique, se développa à partir d’hypothèses hardies et d’intuitions géniales, notamment grâce aux travaux de Niels Bohr. En 1925 et 1926, Heisenberg, Schrödinger et Dirac arrivèrent indépendamment à la formulation complète de la théorie, qui constitue sans nul doute une des plus grandes conceptions de l’esprit humain.
La théorie quantique sert en effet de cadre essentiel à notre compréhension de la Nature, de l’infiniment petit à l’infiniment grand. La physique des particules dites élémentaires, celle des atomes et des molécules, toute la chimie sont basées sur les lois quantiques. Les ensembles d’atomes que constituent les solides obéissent également à ces lois, qui seules peuvent expliquer, par exemple, la conductivité électrique, le magnétisme ou la supraconductivité de certains métaux aux basses températures. Même la vie, dans la mesure où elle dépend de processus physico-chimiques au niveau de la molécule d’ADN, ne pourrait être comprise en dehors des lois quantiques. Enfin, la cosmologie, la science qui s’attache à l’étude de l’évolution de l’univers, donne une grande importance aux phénomènes quantiques qui se sont produits au moment du big-bang initial.

Et pourtant, malgré ses succès éclatants, la physique quantique est souvent perçue comme étrange. Elle introduit en effet dans la description du monde des notions bizarres qui défient notre intuition classique. Il s’agit du principe de superposition des états qui implique qu’un système physique peut être comme suspendu entre différentes réalités, ou encore du concept d’intrication quantique qui introduit une notion troublante de non-localité en physique. Le caractère étrange de ces concepts provient en grande part de ce que nous n’en observons jamais les effets sur les objets macroscopiques qui nous entourent et que donc notre esprit n’est pas préparé à les comprendre. Cette étrangeté troublait les fondateurs de la théorie, et son interprétation a fait l’objet entre eux de discussions très animées. Ces débats se sont en particulier déroulés au cours des fameux Congrès Solvay, à l’époque de l’élaboration de la théorie. Les participants à ces congrès prirent l’habitude d’imaginer des expériences virtuelles dans lesquelles ils isolaient et manipulaient en pensée des particules obéissant aux lois quantiques pour essayer de mettre en évidence des contradictions internes de la théorie. Tous ces débats se conclurent par la victoire de la théorie quantique, à laquelle ni Einstein ni Schrödinger qui jouaient volontiers le rôle d’avocats du diable ne purent trouver de faille. L’intérêt de la majorité des physiciens se détourna alors de ces discussions sur des expériences infaisables, et se consacra à l’exploitation de la théorie pour comprendre la nature, avec le succès évoqué plus haut.

Depuis quelques années cependant, les progrès de la technologie ont permis de réaliser des versions simples des expériences de pensée des fondateurs de la théorie. On peut maintenant piéger des photons, des atomes ou des molécules un à un, les manipuler pour ainsi
dire in vivo à l’aide de faisceaux lasers et ainsi construire des objets étranges, relativement complexes, obéissant à la logique quantique. On peut alors aborder à nouveau, mais de façon concrète, l’étude des fondements de la théorie. On peut également commencer à envisager des applications fascinantes. C’est à ces expériences de pensée devenues réelles qu’est consacré cet exposé, brève exploration au cœur du monde quantique.
Superpositions, interférences quantiques et complémentarité
Commençons par une introduction au principe de superposition. La théorie quantique nous dit que, d’une certaine manière, toute particule microscopique possède un don d’ubiquité. Alors que classiquement elle doit à tout instant être en un point bien précis, quantiquement, elle peut se trouver comme « suspendue » dans une superposition des états correspondant à toutes les positions classiques possibles. À chacune de ces positions est associé un nombre appelé fonction d’onde de la particule au point considéré. Cette fonction a été introduite par de Broglie et c’est Schrödinger qui a établi l’équation qui décrit son évolution, jetant ainsi les bases des lois de la dynamique quantique. La fonction d’onde est en général un nombre complexe. Alors qu’un nombre réel peut être symbolisé par un segment sur une droite, un complexe est représenté par un vecteur dans un plan et possède donc une amplitude (la longueur du vecteur) et une phase (sa direction). C’est le physicien Max Born qui donna l’interprétation physique de la fonction d’onde. Le carré de son amplitude représente la probabilité de trouver la particule au point correspondant lorsqu’une mesure est effectuée. Ainsi, d’après la théorie, l’ambiguïté quantique, la superposition, ne subsiste que tant que l’on ne cherche pas à savoir où est la particule. Si on cherche à déterminer sa position, on force la nature à abandonner son étrangeté quantique, la particule apparaît bien en un point et en un seul, mais cette apparition ne peut être que prévue statistiquement et non déterminée de façon absolue comme en physique classique. C’est ce qui fit dire à Einstein que selon la physique quantique « Dieu joue aux dés », ce qu’il se refusait personnellement à admettre.

La physique atomique permet d’illustrer un aspect élémentaire du principe de superposition. Les chimistes représentent l’état d’un électron dans un atome – par exemple le plus simple d’entre eux, l’hydrogène – par un volume de l’espace qu’on appelle son orbitale (Figure 1a). Ce volume est, pour l’état fondamental de l’hydrogène, une petite sphère centrée sur le noyau de l’atome d’environ un Angström (soit 10-10 m) de diamètre. Il décrit la région de l’espace dans laquelle l’électron est délocalisé. Il se trouve en fait dans une superposition de toutes les positions possibles à l’intérieur de cette sphère. Lorsque l’on porte l’électron de l’atome dans un niveau électronique excité en lui fournissant de l’énergie lumineuse, la forme de l’orbitale change, elle s’étire en général pour occuper des régions plus éloignées du noyau comme le montre la figure 1b. Les états très excités de l’atome s’appellent des états de Rydberg. Dans certains de ces états, l’électron occupe une orbitale très étendue, en forme de tore, dont le rayon peut atteindre un millier d’Angströms (figure1c). Ces états excités géants ont des propriétés très intéressantes que nous retrouverons plus loin.

Abordons maintenant une conséquence essentielle du principe de superposition, l’existence d’interférences quantiques. Considérons la fameuse expérience des fentes de Young réalisée au début du XIXe siècle avec de la lumière, c’est-à-dire des photons, et au XXe siècle avec des électrons, et plus récemment avec des atomes et des molécules : des particules traversent une paroi percée de deux fentes avant d’atteindre un écran. Les particules sont détectées en des points discrets sur l’écran, comme le montre la figure 2a. Après avoir enregistré l’arrivée d’un grand nombre de particules, on constate que les points d’impact se regroupent suivant un réseau de franges « brillantes », séparées par des franges « noires » où les particules n’arrivent jamais. L’expérience se comprend bien en termes de fonction d’onde
des particules. Cette fonction possède en effet deux composantes, correspondant au passage de la particule par chacune des deux fentes. La fonction d’onde totale est la somme des deux composantes, au sens de l’addition des nombres complexes, ou encore des vecteurs qui les représentent. En certains points de l’écran, les ondes sont en phase, leurs vecteurs de même direction, et la probabilité de trouver la particule est importante. En d’autres points, les ondes sont en opposition de phase, leurs vecteurs opposés, et la particule a une probabilité nulle d’arriver. La figure d’interférence s’évanouit si on ferme une des deux fentes, puisque alors une des composantes de la fonction d’onde disparaît.
Cette interprétation ondulatoire est étrange si l’on note que l’expérience peut être faite dans des conditions de flux très faible, où il ne se trouve à chaque instant qu’une particule dans l’appareil. On obtient alors les mêmes franges, après un temps de moyen-âge très long. On peut alors se demander comment une particule, seule dans l’interféromètre, peut « savoir » si les deux trous sont ouverts, auquel cas elle doit éviter les franges noires, ou si un trou est bouché, auquel cas elle peut arriver n’importe où ! On a là un exemple typique de logique non-classique : un phénomène (arrivée de la particule en un point) est moins probable lorsque deux possibilités sont offertes à la particule que si une seule ne l’est ! Un physicien classique posera immédiatement des questions simples : par quel trou passe réellement la particule ? Est ce une onde (auquel cas on comprend les interférences mais pas l’arrivée discrète sur l’écran) ou une particule (auquel cas on comprend les impacts discrets mais plus les interférences). La mécanique quantique répond qu’en vertu du principe de superposition, la particule passe par les deux trous à la fois, aussi longtemps qu’on ne la force pas à choisir ! Notons enfin que de telles expériences, relativement faciles à réaliser avec des particules microscopiques, deviennent de plus en plus difficiles avec des particules de taille importante. C’est encore possible avec des molécules, mais pas avec des boules de billard ou un quelconque objet macroscopique !
Les interférences quantiques jouent un rôle capital en physique microscopique et l’on peut s’en servir pour des applications importantes. Considérons par exemple un atome possédant deux niveaux d’énergie, un niveau fondamental g d’énergie Eg, et un niveau excité e, d’énergie Ee. On sait qu’en absorbant de la lumière dont la fréquence ν satisfait la relation Ee – Eg = hν (où h est la constante de Planck) l’atome peut être porté du niveau g au niveau e en absorbant un photon. Si on excite l’atome par une impulsion lumineuse et si on ajuste la durée de cette impulsion, on peut s’arranger pour que l’atome se trouve excité « à mi-
chemin » entre e et g, dans une superposition de ces deux états. Appliquons maintenant à l’atome initialement dans l’état g deux impulsions identiques, séparées dans le temps, à deux instants t1 et t2. Chacune des impulsions superpose les deux états e et g. Mesurons enfin l’énergie de l’atome et, en recommençant l’expérience un grand nombre de fois, déterminons la probabilité de le trouver finalement dans l’état e. La fonction d’onde associée à l’atome va, comme dans le cas de l’expérience de Young, présenter deux termes. L’un correspond à l’excitation de l’atome de g à e à l’instant t1, l’autre à l’instant t2. À ces termes correspondent des amplitudes complexes qui interfèrent. Leur phase relative peut être variée en balayant la fréquence ν autour de la fréquence de résonance atomique. On observe alors que la probabilité de trouver l’atome dans l’état e oscille en fonction de ν. On obtient un signal d’interférence dit « de Ramsey », du nom du physicien qui a mis au point cette méthode interférométrique. Alors que dans l’expérience de Young l’interférence provient du fait que l’on ne sait pas par quelle fente la particule est passée, ici elle résulte de l’ambiguïté sur l’instant de l’excitation de l’atome. C’est en détectant de telles franges sur l’atome de Césium que l’on fait fonctionner l’horloge atomique qui définit actuellement la seconde.
Revenons un instant sur la question de savoir par quel chemin la particule est passée. L’interférence ne s’observe que si on n’a aucun moyen de connaître ce chemin. Si on cherche à le déterminer, il faut introduire un nouvel élément dans l’appareillage expérimental, par
exemple ajouter dans l’expérience des fentes d’Young une source lumineuse, un laser, qui éclaire les fentes (figure 2b). Lorsque la particule passe, elle diffuse de la lumière au voisinage de la fente correspondante et l’éclair lumineux peut être détecté pour déterminer le trajet de la particule. On constate bien alors que la particule passe aléatoirement par un trou ou par l’autre, mais aussi que les franges disparaissent : les points d’impact sont maintenant distribués de façon uniforme. En d’autres termes, la particule, en diffusant la lumière qui révèle son chemin a été perturbée de façon telle que les relations de phase existant entre les deux composantes de la fonction d’onde associée sont brouillées, entraînant la disparition des franges. Ce résultat exprime ce que Bohr a appelé le principe de complémentarité. L’existence des franges et l’information sur le chemin suivi sont deux aspect exclusifs l’un de l’autre et complémentaires de la réalité physique. Ils nécessitent l’utilisation d’appareils différents. On est sensible tantôt à l’aspect ondulatoire de la particule, si on utilise un appareil rendant les chemins indiscernables, tantôt à l’aspect corpusculaire, si on utilise un appareil permettant de distinguer les chemins.

Intrication quantique, chat de Schrödinger et décohérence
Venons-en maintenant à une autre conséquence essentielle du principe de superposition, observable dans des systèmes constitués d’au moins deux particules qui interagissent entre elles, puis se séparent. Pour fixer les idées, considérons la collision de deux atomes identiques. Chacun de ces atomes possède deux niveaux d’énergie e et g. Supposons qu’avant la collision, l’atome 1 est excité (état e) et l’atome 2 est dans son état fondamental (état g). Au cours de la collision deux événements différents peuvent survenir. Ou bien les atomes conservent leurs énergies initiales, ou bien ils les échangent. Classiquement, les atomes devraient « choisir » l’une de ces deux possibilités. La règle quantique est différente. Ils peuvent suivre les deux voies à la fois. Le système se trouve après la collision dans une superposition de l’état où l’atome 1 est dans e et 2 dans g et de l’état où 1 est dans g et 2 dans e. À chacun de ces états est associée une amplitude complexe. Les modules élevés au carré de ces amplitudes représentent les probabilités de trouver l’une ou l’autre de ces deux situations au cours d’une mesure effectuée sur les deux atomes. Notons que si le résultat de la mesure sur chaque atome est aléatoire, les corrélations entre les résultats des mesures sont certaines. Si l’atome1 est trouvé dans e, l’atome 2 est dans g et inversement. C’est cette corrélation parfaite, observable quel que soit le type de mesure effectué sur les atomes, que l’on appelle intrication (« entanglement » en anglais). Cette intrication subsiste même si les deux atomes se sont éloignés l’un de l’autre et se trouvent séparés après la collision par une distance arbitrairement grande. Elle décrit une non-localité fondamentale de la physique quantique. Une mesure de l’atome 1 peut avoir un effet immédiat à grande distance sur le résultat de la mesure de l’atome 2 ! Il y a donc entre les deux particules un lien quantique immatériel et instantané. C’est Einstein, avec ses collaborateurs Podolski et Rosen, qui a discuté le premier en 1935 cet aspect troublant de la théorie quantique. On l’appelle depuis le problème EPR. Pour Einstein, il s’agissait là d’un défaut grave de la théorie puisqu’elle prévoyait des effets qui lui paraissaient manifestement absurdes. Depuis, le problème a été repris par d’autres physiciens, notablement John Bell dans les années 60, et des expériences effectuées sur des photons intriqués ont montré que la nature se comportait bien comme la théorie quantique le prescrit. L’une des expériences les plus probantes a été effectuée dans les années 1980 par Alain Aspect et ses collègues à Orsay. Notons que la non-localité vérifiée par ces expériences ne contredit pas le principe de causalité. On ne peut se servir des corrélations EPR pour transmettre de l’information instantanément entre deux points.
Si l’intrication nous apparaît comme bizarre, c’est pour une bonne part parce que, comme les interférences quantiques, elle ne s’observe jamais sur des objets macroscopiques.

Ceci nous conduit à la métaphore fameuse du chat de Schrödinger. Réfléchissant sur le problème EPR, Schrödinger alla en effet plus loin. Qu’est ce qui empêcherait, se demanda-t- il, d’amplifier un phénomène d’intrication microscopique pour y impliquer un système macroscopique? Considérons un atome excité qui émet un photon en se désexcitant. La mécanique quantique nous apprend qu’avant que le photon n’ait été émis de façon certaine, le système se trouve dans une superposition d’un état où l’atome est encore excité et d’un état où il s’est déjà désexcité. Chacun de ces termes est affecté de son amplitude complexe dans l’expression de l’état global du système. Mais, remarque Schrödinger, un seul photon peut déclencher un événement macroscopique. Imaginons en effet notre atome enfermé dans une boîte avec un chat. Supposons que le photon émis par l’atome déclenche un dispositif qui tue le chat. Si l’atome est dans une superposition d’un état où il a émis un photon et d’un état où il ne l’a pas encore émis, quel est à cet instant l’état du chat ? Si l’on admet que le chat peut être décrit par un état quantique bien défini ( et l’on touche là, comme nous le montrons plus loin, à un aspect crucial du problème), on conclut immanquablement à l’existence d’une intrication du système « atome + chat » qui devrait se trouver dans une superposition du chat vivant associé à l’atome excité et du chat mort associé à l’atome désexcité. Une telle situation laissant le malheureux chat suspendu entre la vie et la mort, représentée sur la figure 2c, était jugée burlesque par Schrödinger. Ce problème a fait couler beaucoup d’encre. Certains ont dit que c’est au moment où on cherche à observer si le chat est vivant ou mort qu’un processus mental chez l’observateur « force » la nature à décider. D’autres se sont demandé s’il fallait tenir compte du processus mental du chat lui-même et la discussion a vite versé dans la métaphysique.
Si on veut éviter un tel débat, l’approche pragmatique de Bohr est utile. Pour savoir si la superposition d’états existe, il faut imaginer un dispositif d’observation spécifique. La superposition « chat vivant- chat mort » ne peut être prouvée que si l’on sait réaliser une expérience susceptible de révéler l’interférence des amplitudes complexes associées aux parties « vivante » et « morte » du chat. Schrödinger n’a pas poussé la discussion jusque-là, mais on peut par exemple songer à utiliser comme sonde de l’état du chat une souris
« quantique» à qui l’on demanderait de traverser la boîte. La probabilité que la souris s’échappe devrait alors être le carré de la somme de deux amplitudes, une correspondant au chat vivant, l’autre au chat mort. Verra-t-on dans la probabilité finale un terme
d’interférence ? C’est peu probable et fortement contraire à notre intuition.

La question qui se pose est alors : qu’est-il arrivé aux interférences, pourquoi ont-elles disparu ? La réponse fait intervenir la notion fondamentale de décohérence. La situation que nous avons schématisée à l’extrême a négligé un élément essentiel. Notre chat ne peut être isolé en présence d’un seul atome « décidant » de son sort. Le chat – comme en général tout système macroscopique - est en effet baigné par un environnement constitué de très nombreuses molécules, de photons thermiques, et son couplage avec cet environnement ne peut être négligé. Pour mieux comprendre ce qui se passe, revenons à l’expérience d’Young. Si l’on cherche à déterminer le chemin par lequel la particule est passée, on doit par exemple lui faire diffuser un photon (figure 2b). On intrique alors ce photon avec la particule et on obtient une espèce de paire EPR dont un élément est la particule et l’autre le photon. Si on mesure le photon dans un état, on sait que la particule est passée par un trou. L’autre état a alors disparu. Il n’y a plus d’interférence. On comprend ainsi mieux la complémentarité comme un effet d’intrication de la particule avec l’environnement (ici le photon) qui interagit avec elle. La situation de notre chat est similaire. Notons tout d’abord que le point de départ de notre raisonnement, l’existence d’un état quantique bien déterminé pour le chat à l’instant initial de l’expérience, doit être remis en question. Dès cet instant, le chat est déjà intriqué avec son environnement et ne peut donc pas être décrit par un état quantique qui lui est propre. En admettant même que l’on puisse le découpler du reste du monde à cet instant
initial, il serait impossible d’éviter son interaction avec l’environnement pendant qu’il interagit avec l’atome unique imaginé par Schrödinger. Dès qu’il serait placé dans un état de superposition, il interagirait aussi avec un bain de molécules et de photons qui se trouveraient rapidement dans des états quantiques différents suivant que le chat est vivant ou mort. Très vite, une information sur l’état du chat fuirait dans l’environnement, détruisant les interférences quantiques, de la même façon que le photon diffusé par la particule dans l’expérience de Young fait disparaître les franges. L’environnement agit comme un « espion » levant l’ambiguïté quantique.
Notons enfin que la décohérence se produit de plus en plus vite lorsque la taille des systèmes augmente. Ceci est dû au fait que plus le système est gros, plus il est couplé à un grand nombre de degrés de libertés de l’environnement. Il n’est pas nécessaire de considérer des systèmes aussi macroscopiques qu’un chat pour que la décohérence domine. C’est déjà le cas pour les systèmes microscopiques au sens de la biologie que sont les macromolécules, les virus ou les bactéries. Le fait que l’on aît raisonné sur des êtres vivants n’a non plus rien d’essentiel ici. La décohérence est tout aussi efficace sur un objet inerte constitué d’un grand nombre de particules (agrégat d’atomes, grain de poussière...). L’image du chat n’est qu’une métaphore extrême imaginée par Schrödinger pour frapper les esprits.

Des atomes et des photons dans une boîte
Passons à la description de quelques expériences récentes sur l’intrication quantique, véritables réalisations des expériences de pensée. Il existe essentiellement trois systèmes sur lesquels des manipulations relativement complexes d’intrication ont été réalisées. Les sources de photons intriqués se sont considérablement améliorées depuis les expériences d’Aspect. On réalise à présent des paires de photons intriqués en décomposant dans un cristal non-linéaire un photon ultraviolet en deux photons visibles ou infrarouge. De belles expériences sur ces paires de photons ont été récemment réalisées, à Innsbruck, à Genève et aux États-Unis. Dans certains cas, il est préférable de disposer de particules massives, qui restent un long moment dans l’appareil pour être manipulées, au lieu de photons qui s’échappent du système à la vitesse de la lumière. On peut alors utiliser des ions piégés dans un champ électromagnétique. Il s’agit d’atomes auxquels on a arraché un électron et qui possèdent ainsi une charge sensible aux forces électriques exercées sur elle par un jeu d’électrodes métalliques convenablement agencées. On peut ainsi piéger quelques ions observables par la lumière de fluorescence qu’ils émettent lorsqu’ils sont éclairés par un laser. D’autres lasers peuvent servir à manipuler les ions. De belles expériences d’intrication ont été ainsi faites à Boulder dans le Colorado.

Le troisième type d’expérience, réalisé à l’École Normale Supérieure à Paris, est intermédiaire entre les deux précédents. On y intrique à la fois des photons et des atomes. Les photons ne se propagent pas, mais sont piégés dans une cavité électromagnétique traversée par les atomes. La cavité est formée de miroirs métalliques en niobium supraconducteur à très basse température placés l’un en face de l’autre. Des photons micro-onde peuvent se réfléchir des centaines de millions de fois sur ces miroirs et rester ainsi piégés pendant un temps de l’ordre de la milliseconde. Des atomes, préparés dans un état de Rydberg très excité, traversent un à un la cavité, interagissent avec les photons et sont ensuite ionisés et détectés. La grande taille de ces atomes (figure 1c) les rend extrêmement sensibles au couplage avec le rayonnement de la cavité, une condition essentielle à l’observation des phénomènes d’intrication quantique.
Nous donnerons ici simplement un aperçu général sur quelques expériences récentes d’intrication atome-cavité. Pour simplifier, admettons que nos atomes possèdent essentiellement deux niveaux de Rydberg appelés comme précédemment e et g. La séparation des miroirs est, dans un premier temps, réglée pour que les photons de la cavité soient
résonnants avec la transition entre ces deux niveaux. Cela veut dire que si l’atome entre dans la cavité dans le niveau e, il peut, en conservant l’énergie, y émettre un photon en passant dans le niveau g et que s’il y entre dans g, il peut absorber un photon présent pour passer dans l’état e. Envoyons un atome dans e à travers la cavité initialement vide et réglons le temps de traversée de la cavité par l’atome pour que la probabilité d’émission d’un photon soit de
50 %. L’état final obtenu est une superposition d’un atome dans e avec une cavité vide et d’un atome dans g avec une cavité contenant un photon, ce qui constitue une intrication atome- photon. Cette intrication survit à la sortie de l’atome de la cavité.
Compliquons maintenant la situation en envoyant dans la cavité deux atomes, l’un dans e, l’autre dans g. Le premier atome a sa vitesse réglée pour émettre avec 50 % de probabilité un photon et le second interagit le temps qu’il faut pour absorber à coup sûr le photon s’il y en a un. Il s’agit donc d’un transfert d’énergie entre les deux atomes induit par la cavité. Si on se demande, après la traversée des deux atomes, si l’excitation a été transférée de l’un à l’autre, la théorie quantique nous donne une réponse ambiguë : oui et non à la fois. Le résultat est une paire d’atomes intriqués. Le schéma – illustré sur la figure 3 - se généralise avec un plus grand nombre de particules. On peut réaliser des situations où deux atomes et un photon, ou encore trois atomes, sont intriqués...
Une version de laboratoire du chat de Schrödinger
Envisageons maintenant une situation où la cavité est désaccordée par rapport à la fréquence de la transition atomique. La non-conservation de l’énergie interdit alors l’émission ou l’absorption de photons par l’atome. Cela ne veut pas dire cependant que les deux systèmes n’interagissent pas. La simple présence de l’atome dans la cavité modifie légèrement la fréquence du champ qu’elle contient. Cet effet dépend de l’état d’ énergie de l’atome. La fréquence du champ est augmentée ou diminuée, suivant que l’atome se trouve dans un niveau ou l’autre. Que se passe-t-il alors si l’atome est dans une superposition des deux états ? Les lois quantiques disent que l’on doit avoir en même temps une fréquence diminuée et augmentée. Cette réponse ambiguë conduit à la possibilité de créer un nouveau type d’intrication.
Commençons par injecter entre les miroirs un champ contenant quelques photons à l’aide d’une source micro-onde couplée à la cavité par un guide d’onde, puis coupons cette source. Nous piégeons ainsi quelques photons dans la cavité pendant un temps d’une fraction de milliseconde. Le champ électrique de l’onde qui leur est associée est une fonction périodique du temps. On peut représenter cette fonction par un nombre complexe dont le module et la phase correspondent à ceux du champ. Ce nombre complexe est associé à un vecteur (on retrouve la représentation des nombres complexes évoquée plus haut, introduite en optique par Fresnel). L’extrémité du vecteur se trouve dans un petit cercle d’incertitude qui reflète l’existence pour de tels champs contenant quelques photons des fluctuations quantiques d’amplitude et de phase. Envoyons à présent dans la cavité notre atome dans une superposition des états e et g (Figure 4a). Sa présence a pour résultat de changer de façon transitoire la période des oscillations du champ et donc de le déphaser, c’est-à-dire de déplacer les instants où il passe par ses maxima et minima (Figure 4b). De façon équivalente, le vecteur représentatif tourne dans le plan de l’espace des phases. Mais du fait que l’atome est dans une superposition de deux états produisant des effets de signes opposés, on a deux états de phases différentes, intriqués aux deux états atomiques, une situation qui rappelle celle du chat de Schrödinger (Figure 4c). On voit également que le champ est une espèce d’aiguille de mesure qui « pointe » dans deux directions différentes du plan de Fresnel suivant que l’atome est dans e ou g, jouant ainsi le rôle d’un appareil de mesure qui « observe » l’atome.

Cette remarque nous conduit à décrire une expérience de démonstration simple du principe de complémentarité. Nous avons vu qu’ en soumettant l’ atome à deux impulsions lumineuses mélangeant les états e et g, aux instants t1 et t2 (en appliquant à l’atome deux impulsions dans les « zones de Ramsey » indiquées par des flèches sur la Figure 5a), on obtient, pour la probabilité finale de trouver l’atome dans g, un signal de franges d’interférence. Ces franges ne s’observent que si rien dans le dispositif ne nous permet de savoir dans quel état se trouve l’atome entre les deux impulsions. Soumettons alors l’atome entre t1 et t2 à un petit champ non résonnant stocké dans une cavité. La phase de ce champ tourne d’un angle dépendant de l’état de l’atome. Le champ « espionne » l’atome et les franges vont donc s’effacer. C’est bien ce qu’on observe (figure 5b). Si la rotation de phase du champ est faible, on ne peut en déduire avec certitude l’état atomique et les franges subsistent avec un contraste réduit. Elles disparaissent par contre totalement dans le cas d’une rotation de phase importante, rendant certaine l’information sur le chemin suivi par l’atome. On modifie simplement la rotation de phase du champ en changeant le désaccord de fréquence entre l’atome et la cavité.
La décohérence quantique saisie sur le vif
L’expérience que nous venons de décrire s’intéresse à la superposition des états de l’atome, influencée par la présence du champ. Que peut-on dire de la superposition des états du champ lui-même ? Combien de temps cette superposition d’états survit-elle ? L’environnement du champ est constitué par l’espace qui entoure la cavité, qui peut se remplir de photons diffusés par les défauts de surface des miroirs. En fait, c’est ce processus de diffusion qui limite dans notre expérience la durée de vie du champ à un temps Tcav d’une fraction de milliseconde. Si la cavité contient en moyenne n photons, un petit champ contenant environ un photon s’échappe donc dans l’environnement en un temps très court, Tcav divisé par n. Ce champ microscopique emporte une information sur la phase du champ restant dans la cavité. Ainsi, au bout d’un temps Tcav/n, la cohérence quantique entre les deux composantes du champ dans la cavité a disparu. Ceci explique pourquoi des champs macroscopiques, pour lesquels n est très grand (de l’ordre d’un million ou plus), se comportent classiquement, la décohérence y étant quasi-instantanée. Dans notre expérience cependant, n est de l’ordre de 3 à 10. Le temps de décohérence est alors assez long pour permettre l’observation transitoire d’interférences quantiques associées aux deux composantes de notre « chat de Schrödinger ». Pour cette observation, nous envoyons dans la cavité, après le premier atome qui prépare le « chat », un second atome jouant le rôle de la « souris quantique » évoquée plus haut. Cet atome recombine les composantes du champ séparées par le premier atome de telle sorte qu’il apparaît, dans un signal de corrélation entre les résultats des détections des deux atomes, un terme sensible à l’interférence associée aux deux composantes du chat créé par le premier atome. Ce signal d’interférence (voir Figure 6) décroît lorsque le délai entre les deux atomes augmente. Ce phénomène est d’autant plus rapide que les deux composantes du « chat » sont plus séparées, ce qui illustre un des aspects essentiels de la décohérence, qui agit d’autant plus vite que le système est plus
« macroscopique ». Cette expérience constitue une exploration de la frontière entre les mondes quantique (dans lequel les effets d’interférences sont manifestes) et quantique (dans lequel ces effets sont voilés).
Vers une utilisation pratique de la logique quantique ?
En dehors de leur intérêt fondamental, quelles peuvent être les retombées pratiques de ces expériences et de celles qui sont effectuées sur des ions piégés ou des photons intriqués ?
La logique qui y est à l’œuvre peut être décrite dans le cadre d’une branche en plein développement de l’informatique, qui s’intéresse à la façon dont on peut transmettre et manipuler de l’information en exploitant les lois quantiques. On peut en effet considérer les systèmes à deux états que nous avons considérés (atome à deux niveaux, cavité avec 0 ou 1 photon, champ présentant deux phases possibles) comme des « porteurs » d’information, des « bits » à l’aide desquels on peut coder deux valeurs, 0 ou 1. Nos expériences peuvent être vues comme des opérations sur ces bits, qui les couplent suivant une dynamique conditionnelle. On peut par exemple considérer que le champ (0 ou 1 photon) est un bit
« contrôle » et que l’atome est un bit « cible ». On peut réaliser l’expérience en cavité de sorte que si le bit contrôle est dans l’état 0, le bit cible ne change pas, et que par contre il change d’état si le bit contrôle est dans l’état 1. On obtient alors une porte conditionnelle analogue aux portes utilisées dans les ordinateurs classiques. La nouveauté de cette porte par rapport à celles des ordinateurs usuels est que les bits peuvent être mis dans des superpositions d’états. On manipule ainsi non pas seulement les valeurs 0 ou 1, mais aussi des superpositions de ces valeurs. On parle alors de bits quantiques ou « qubits ». Si on prépare le qubit contrôle dans une superposition de 0 et de 1, le fonctionnement de la porte conditionnelle génère en sortie deux bits intriqués. Cette intrication élémentaire peut être amplifiée en se servant de la sortie d’une porte comme entrée d’une porte en cascade et ainsi de suite. On peut construire de la sorte des combinaisons complexes d’opérations. L’intrication ainsi réalisée permettrait en principe d’obtenir des situations équivalentes à la superposition cohérente d’un grand nombre d’ordinateurs classiques, travaillant en parallèle et interférant entre eux. Pour certains types de calculs (comme la factorisation des grands nombres), on devrait gagner énormément en vitesse d’exécution par rapport à ce que permettent les algorithmes de calcul classiques.
Cette constatation explique en grande part l’engouement actuel pour ce type de recherche. Il faut cependant faire ici une réserve importante. La décohérence est un problème très sérieux pour ce genre de système. Ce que l’on cherche à construire ainsi n’est autre qu’un super chat de Schrödinger dont nous venons de voir la sensibilité extraordinaire au couplage avec l’environnement. Dès qu’un quantum s’échappe de l’ « ordinateur », la cohérence quantique est perdue. Certains espèrent résoudre la difficulté en ajoutant des dispositifs correcteurs d’erreurs quantiques. Il s’agit de processus complexes, dont la mise en œuvre efficace est loin d’être évidente. L’ avenir de l’ordinateur quantique reste – et c’est un euphémisme – bien incertain. D’autres applications de la logique quantique, moins sensibles à la décohérence, sont plus prometteuses. Le partage entre deux observateurs de paires de particules intriquées ouvre la voie à une cryptographie quantique permettant l’échange d’informations secrètes, suivant une procédure inviolable. Des expériences très encourageantes ont été réalisées en ce domaine. La téléportation quantique permet de reproduire à distance, en se servant des propriétés de l’intrication, l’état d’une particule quantique. Cet effet pourrait lui aussi être utilisé dans des dispositifs de traitement quantique de l’information.
Conclusion : la « gloire et la honte du quantum »
Au terme de cette brève exploration de la physique quantique, concluons sur un mot du physicien Archibald Wheeler, l’un des derniers survivants de la génération des fondateurs de la théorie. Réfléchissant sur ce siècle des quanta, il a parlé sous une forme lapidaire de « la gloire et de la honte du quantum ». La gloire c’est bien sûr l’immense succès de cette théorie pour nous faire comprendre la nature. La honte, c’est qu’au fond, on ne « comprend » pas la théorie. En essayant d’utiliser un langage issu de notre monde classique, on arrive à des problèmes d’interprétation troublants. En fait, beaucoup de physiciens ne se posent pas ces problèmes. La nature est ce qu’elle est, quantique sans doute, et ils l’admettent sans états
d’âme, obéissant à l’injonction de Bohr à Einstein : « arrête de dire à Dieu ce qu’il doit
faire » ! Pour d’autres, il manque encore une formulation de la théorie qui réconcilierait notre intuition avec le monde tel qu’il est. La nouveauté de cette fin de siècle est que ce problème, longtemps réservé aux théoriciens et aux « imagineurs » d’expériences de pensée, s’ouvre maintenant aux expériences réelles.

Réaliser ces expériences de pensée est un défi amusant et excitant. C’est un plaisir rare de pouvoir suivre in vivo la danse des atomes et des photons qui obéissent de façon si parfaite aux injonctions de la théorie quantique. Il faut cependant constater que ces expériences deviennent de plus en plus difficiles lorsqu’on augmente la taille du système. Maintenir ne serait-ce qu’un modèle réduit de chat de Schrödinger suspendu dans une superposition cohérente d’états est vraiment difficile. Même si l’ordinateur quantique n’est pas vraiment en vue, ce domaine de recherche nous réserve cependant encore bien des surprises. Il y aura sans doute des applications de toute cette physique, et, comme c’est souvent le cas, ce ne seront vraisemblablement pas celles que l’on prévoit.
RÉFÉRENCES :
Sur l’intrication quantique et la décohérence :
W. ZUREK, « Decoherence and the transition from quantum to classical », Physics Today, Vol 44, No 10, p36 (1991).
Sur les expériences d’atomes en cavité :
P.R. BERMAN (éditeur) : « Cavity Quantum Electrodynamics », Academic Press, Boston (1994)
S. HAROCHE, J.M. RAIMOND et M. BRUNE, « Le chat de Schrödinger se prête à l’expérience », La Recherche, 301, p50, Septembre 1997.
Sur l’information quantique :
D. BOUWMEESTER, A. EKERT et A. ZEILINGER (éditeurs) « The physics of quantum information », Springer Verlag, Berlin, Heidelberg (2000).
Légendes des figures :
Figure 1. Représentation des orbitales de l’état fondamental (a), du premier état excité (b) et d’un état de Rydberg très excité (c) de l’électron de l’atome d’hydrogène. La figure (c) n’est pas à l’échelle (une orbitale de Rydberg peut avoir un diamètre mille fois plus grand que celui d’un état fondamental).
Figure 2. Interférences quantiques : (a) Expérience d’Young : chaque particule traverse l’interféromètre suivant deux chemins indiscernables et les points d’impact sur l’écran reproduisent une figure de franges. (b) Si on cherche à déterminer le chemin suivi, l’interférence disparaît (complémentarité). (c) quand on essaye de superposer deux états distincts d’un système macroscopique (superposition symbolisée par le signe + d’un « chat vivant » et d’un « chat mor t » dans une boîte), l’environnement (molécules dans la boîte) s’intrique avec le système, supprimant très rapidement les effets d’interférence (décohérence).
Figure 3. Expérience préparant une paire d’atomes intriqués : deux atomes, le premier dans l’état e, le second dans g sont envoyés dans une cavité initialement v ide, formée de deux miroirs se faisant face. Si les temps d’interaction atome-champ sont convenablement réglés, les deux atomes émergent dans une superposition d’états.
Figure 4 : Principe de la préparation d’un état « chat de Schrödinger » du champ dans la cavité : (a) un atome dans une superposition de deux états traverse la cavité. (b) il donne au champ deux phases à la fois. (c) Chaque composante de phase est représentée par un vecteur pointant dans une direction donnée.
Figure 5 : Expérience de complémentarité : (a) Principe : l’atome suit deux
« chemins » entre les zones de Ramsey et la phase du champ dans la cavité fournit une information levant l’ambiguité. (b) Signal : La probabilité de détecter l’atome dans le niveau g est enregistrée en fonction de la fréquence appliquée dans les zones de Ramsey, pour trois valeurs du déphasage du champ. Les franges sont d’autant moins visibles que les deux composantes du champ dans la cavité sont plus séparées.

Figure 6. Expérience de décohérence : (a) Principe : l’atome 1 prépare la superposition d’états de phases différentes du champ dans la cavité et l’atome 2 la sonde après un délai variable. (b) Signaux de corrélation à deux atomes en fonction du délai entre eux, obtenus en moyennant les résultats d’un grand nombre de réalisations. Le nombre moyen de photons est 3,3. L’expérience est effectuée pour deux séparations différentes des composantes du champ (cercles et triangles expérimentaux). Les courbes sont théoriques.

 

  VIDEO       CANAL  U         LIEN 
 

 
 
 
 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

 

 

 

 

 

 

 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

Métaux, semi-conducteurs, ou même supraconducteurs transportant un courant électrique sans aucune résistance, les matériaux présentent une diversité de propriétés électroniques remarquable, mise à profit dans de nombreuses applications qui font partie de notre quotidien. La chimie de l'état solide, en explorant les très nombreuses combinaisons entre éléments pour élaborer des structures de plus en plus complexes, nous invite à un véritable jeu de construction avec la matière, source de nouvelles découvertes. En même temps, le développement de techniques permettant d'élaborer, de structurer, et de visualiser ces matériaux à l'échelle de l'atome, ouvre d'immenses perspectives. Des lois de la mécanique quantique qui régissent le comportement d'un électron, aux propriétés d'un matériau à l'échelle macroscopique, c'est une invitation au voyage au coeur des matériaux que propose cette conférence.

Transcription de la 580e conférence de l'Université de tous les savoirs prononcée le 23 juin 2005
De l'atome au cristal : Les propriétés électroniques de la matière

Par Antoine Georges
Les ordres de grandeur entre l'atome et le matériau :
1. Il existe entre l'atome et le matériau macroscopique un très grand nombre d'ordres de grandeur, d'échelles de longueur. Prenons l'exemple d'un lingot d'or : quelqu'un muni d'une loupe très puissante pourrait observer la structure de ce matériau à l'échelle de l'atome : il verrait des atomes d'or régulièrement disposés aux nSuds d'un réseau périodique. La distance entre deux de ces atomes est de l'ordre de l'Angstrom, soit 10-10m. Ainsi, dans un lingot cubique de un millimètre de côté, il y a 10 millions (107) d'atomes dans chaque direction soit 1021 atomes au total ! Les échelles spatiales comprises entre la dimension atomique et macroscopique couvrent donc 7 ordres de grandeur. Il s'agit alors de comprendre le fonctionnement d'un système composé de 1021 atomes dont les interactions sont régies par les lois de la mécanique quantique.

2. Malheureusement, une telle loupe n'existe évidemment pas. Cependant, il est possible de voir les atomes un par un grâce à des techniques très modernes, notamment celle du microscope électronique à effet tunnel. Il s'agit d'une sorte de « gramophone atomique », une pointe très fine se déplace le long d'une surface atomique et peut détecter d'infimes changements de relief par variation du courant tunnel (voir plus loin). Cette découverte a valu à ses inventeurs le prix Nobel de physique de 1986 à Gerd Karl Binnig et Heinrich Rohrer (Allemagne).

3. Nous pouvons ainsi visualiser les atomes mais aussi les manipuler un par un au point de pouvoir « dessiner » des caractères dont la taille ne dépasse pas quelques atomes ! (Le site Internet www.almaden.ibm.com/vis/stm/gallery.html offre de très belles images de microscopie à effet tunnel). Cette capacité signe la naissance du domaine des nanotechnologies où la matière est structurée à l'échelle atomique.

4. Les physiciens disposent d'autres « loupes » pour aller regarder la matière à l'échelle atomique. Parmi elles, le synchrotron est un grand anneau qui produit un rayonnement lumineux très énergétique et qui permet de sonder la structure des matériaux, des molécules ou des objets biologiques, de manière statique ou dynamique. Les applications de ce genre de loupe sont innombrables en physique des matériaux, chimie, biologie et même géologie (par pour l'étude des changements structuraux des matériaux soumis à de hautes pressions).

5. Il existe encore bien d'autres « loupes » comme par exemple la diffusion de neutrons, la spectroscopie de photo-émission, la résonance magnétique... Dans la diffusion de neutrons, un neutron pénètre un cristal pour sonder la structure magnétique du matériau étudié.

La grande diversité des matériaux :
6. Ces différentes techniques révèlent la diversité structurale des matériaux, qu'ils soient naturels ou artificiels. Le sel de cuisine, par exemple, a une structure cristalline très simple. En effet, il est composé d'atomes de sodium et de chlore régulièrement alternés. Il existe également des structures plus complexes, comme par exemple les nanotubes de carbone obtenus en repliant des feuilles de graphite sur elles-mêmes ou la célèbre molécule C60 en forme de ballon de football composée de 60 atomes de carbone (fullerènes)

7. Tous ces matériaux peuvent être soit présents à l'état naturel soit élaborés de manière artificielle. Cette élaboration peut être faite plan atomique par plan atomique en utilisant une technique appelée « épitaxie par jet moléculaire » dans laquelle un substrat est bombardé par des jets moléculaires. Les atomes diffusent pour former des couches monoatomiques. Cette technique permet alors de fabriquer des matériaux contrôlés avec une précision qui est celle de l'atome.

8. La diversité des matériaux se traduit donc pas une grande diversité des structures, mais aussi de leurs propriétés électroniques. Par exemple, la résistivité (c'est-à-dire la capacité d'un matériau à s'opposer au passage d'un courant : R=U/I) varie sur 24 ordres de grandeurs entre de très bons conducteurs et un très bon isolant, ce qui est encore bien plus que les 7 ordres de grandeurs des dimensions spatiales. Il existe donc des métaux (qui sont parfois de très bons conducteurs), des isolants (de très mauvais conducteurs), des semi-conducteurs et même des supraconducteurs. Ces derniers sont des métaux, qui en dessous d'une certaine température, n'exercent aucune forme de résistance et ne dissipent aucune énergie. D'autres matériaux encore voient leur gradient thermique évoluer en fonction du courant qui les traverse, ceci permet par exemple de fabriquer du « froid » avec de l'électricité ou fabriquer de l'électricité avec de la chaleur, ce sont des thermoélectriques. Enfin, la résistivité de certains matériaux est fonction du champ magnétique dans lequel ils sont placés.

9. Ces diversités, autant structurales qu'électroniques, sont et seront de plus en plus mises à profit dans d'innombrables applications. Nous pouvons citer parmi elles, le transistor, le circuit intégré, le lecteur CD, l'imagerie par résonance magnétique etc. Derrière ces applications pratiques, il y a des problèmes de physique et de chimie fondamentales, et pour parfaitement comprendre l'origine de cette diversité, il faut remonter aux lois de la mécanique quantique. Il s'agit donc de jeter un pont entre l'échelle macroscopique et le monde quantique, à travers ces fameux 7 ordres de grandeurs. Particulièrement dans ce domaine, les sciences théoriques et expérimentales interagissent énormément. Nous allons donc partir de l'échelle atomique pour essayer de comprendre le comportement macroscopique d'un matériau.
De l'atome au matériau :

10. Commençons donc par la structure atomique. Un atome est composé d'un noyau, autour duquel gravitent des électrons. L'électron est environ 2000 fois plus léger que les protons et neutrons, constituants de base du noyau. La taille de cet ensemble est d'environ 10-10m (un Angstrom).
11. Le système {noyau+électron} semble comparable au système {Terre+soleil}, dans ce cas, l'électron tournerait sur une orbite bien régulière autour du noyau. Il n'en n'est rien. Même si les physiciens ont, pour un temps, cru au modèle planétaire de l'atome, nous savons depuis les débuts de la mécanique quantique que le mouvement de l'électron est bien différent de celui d'une planète !

12. La première différence notable est que l'électron ne suit pas une trajectoire unique. En fait, nous ne pouvons trouver l'électron qu'avec une certaine probabilité dans une région de l'espace. Cette région est appelée orbitale atomique. La forme de ce nuage de probabilités dépend de l'énergie de l'électron et de son moment cinétique. Si cette région est sphérique, on parle d'orbitale « s », (cas de l'atome d'hydrogène où seul un électron tourne autour du noyau). On parle d'orbitale « p » lorsque le nuage de probabilités est en forme de 8, (atome d'oxygène). Enfin, lorsque ce nuage prend une forme de trèfle à quatre feuilles, on parle d'orbitale « d » (atome de fer). Ainsi, il n'existe pas de trajectoires à l'échelle quantique, mais uniquement des probabilités de présence.
13. De plus, l'énergie d'un électron ne peut prendre que certaines valeurs bien déterminées, l'énergie est quantifiée (origine du terme quantique). La localisation de ces différents niveaux d'énergies et la transition entre ces niveaux par émission ou par absorption a été à l'origine de la mécanique quantique. Ces travaux ont valu à Niels Bohr le prix Nobel de physique de 1922. L'état d'énergie le plus bas est appelé état fondamental de l'atome. Il est par ailleurs possible d'exciter l'électron (avec de la lumière, par exemple) vers des niveaux d'énergie de plus en plus élevés. Ceci est connu grâce aux spectres d'émission et d'absorption de l'atome, qui reflètent les différents niveaux d'énergie possibles.

14. La troisième particularité du mouvement de l'électron est son Spin, celui-ci peut être représenté par une représentation imagée : l'électron peut tourner sur lui-même vers la gauche ou vers la droite, en plus de sa rotation autour du noyau. On parle de moment cinétique intrinsèque ou de deux états de Spin possibles. Pauli, physicien autrichien du XXéme siècle, formula le principe d'exclusion, à savoir qu'un même état d'énergie ne peut être occupé par plus de deux électrons de Spin opposé. Nous verrons plus loin qu'il est impossible de connaître l'état macroscopique d'un matériau sans tenir compte du principe d'exclusion de Pauli. Pour l'atome d'hélium par exemple, la première (et seule) couche contient deux atomes et deux seulement, il serait impossible de rajouter un atome dans cette couche, elle est dite complète.
15. On peut considérer grâce à ces trois principes (description probabiliste, niveaux d'énergies quantifiés et principe d'exclusion) que l'on remplit les couches électroniques d'un atome avec les électrons qui le constituent. Les éléments purs, dans la nature, s'organisent alors de manière périodique, selon la classification de Mendeleïev. Cette classification a été postulée de manière empirique bien avant le début de la mécanique quantique, mais cette organisation reflète le remplissage des couches atomiques, en respectant le principe d'exclusion de Pauli.
16. Un autre aspect du monde quantique est l'effet tunnel. Dans le microscope du même nom, cet effet est mis à profit pour mesurer une variation de relief. L'effet tunnel est une sorte de « passe-muraille quantique ». En mécanique classique, un personnage qui veut franchir un obstacle doit augmenter son niveau d'énergie au dessus d'un certain niveau. En mécanique quantique, en revanche, il est possible de franchir cet obstacle avec une certaine probabilité même si notre énergie est inférieure au potentiel de l'obstacle. Bien sûr, cette probabilité diminue à mesure que cette différence d'énergie augmente.
17. Cet effet tunnel assure la cohésion des solides, et permet aussi à un électron de se délocaliser sur l'ensemble d'un solide. Cet effet tunnel est possible grâce à la dualité de l'électron : il est à la fois une particule et une onde. On peut mettre en évidence cette dualité grâce à l'expérience suivante : une source émet des électrons un par un, ceux-ci ont le choix de passer entre deux fentes possibles. La figure d'interférence obtenue montre que, bien que les électrons soient émis un par un, ils se comportent de manière ondulatoire.

18. Les électrons des couches externes de l'atome (donc les moins fortement liés au noyau) vont pouvoir se délocaliser d'un atome à l'autre par effet tunnel. Ces « sauts », sont à l'origine de la cohésion d'un solide et permettent également la conduction d'un courant électronique à travers tout le solide.
19. Une autre conséquence de cet effet tunnel est que l'énergie d'un solide n'est pas une simple répétition n fois des niveaux d'énergie de chaque atome isolé. En réalité, il apparaît une série d'énergies admissibles qui se répartissent dans une certaine gamme d'énergie, cette gamme est appelée bande d'énergie permise. D'autres gammes restent interdites. Ainsi, si les atomes restent éloignés les uns des autres, les bandes d'énergies admises sont très étroites, mais à mesure que la distance inter-atomique diminue, ces bandes s'élargissent et le solide peut alors admettre une plus large gamme de niveaux d'énergie.

20. Nous pouvons penser, comme dans la classification périodique, que les électrons remplissent ces bandes d'énergies, toujours en respectant le principe d'exclusion de Pauli. L'énergie du dernier niveau rempli est appelée énergie du niveau de Fermi. La manière dont se place ce dernier niveau rempli va déterminer la nature du matériau (métal ou isolant). Si le niveau de Fermi se place dans une bande d'énergie admise, il sera très facile d'exciter les électrons, le matériau sera donc un métal. Si au contraire le niveau de Fermi se place dans une bande d'énergie interdite, il n'est pas possible d'exciter les électrons en appliquant une petite différence de potentiel, nous avons donc affaire à un isolant. Enfin, un semi-conducteur est un isolant dont la bande d'énergie interdite (« gap », en anglais), est suffisamment petite pour que l'on puisse exciter un nombre significatif de porteurs de charge simplement avec la température ambiante.
Nous voyons donc que l'explication de propriétés aussi courantes des matériaux repose sur les principes généraux de la mécanique quantique.

21. Ainsi, dans un solide constitué d'atomes dont la couche électronique externe est complète, les électrons ne peuvent sauter d'un atome à l'autre sans violer le principe d'exclusion de Pauli. Ce solide sera alors un isolant.

22-23. En réalité, les semi-conducteurs intrinsèques (les matériaux qui sont des semi-conducteurs à l'état brut) ne sont pas les plus utiles. On cherche en fait à contrôler le nombre de porteurs de charge que l'on va induire dans le matériau. Pour cela, il faut créer des états d'énergies très proches des bandes permises (bande de conduction ou bande de Valence). On introduit à ces fins des impuretés dans le semi-conducteur (du bore dans du silicium, par exemple) pour fournir ces porteurs de charges. Si on fournit des électrons qui sont des porteurs de charges négatifs, on parlera de dopage N. Si les porteurs de charges sont des trous créés dans la bande de Valence, on parlera de dopage P.

24. L'assemblage de deux semi-conducteurs P et N est la brique de base de toute l'électronique moderne, celle qui permet de construire des transistors (aux innombrables applications : amplificateurs, interrupteurs, portes logiques, etc.). Le bond technologique dû à l'invention du transistor dans les années 1950 repose donc sur tout l'édifice théorique et expérimental de la mécanique quantique. L'invention du transistor a valu le prix Nobel en 1956 à Brattain, Shockley et Bardeen. Le premier transistor mesurait quelques centimètres, désormais la concentration dans un circuit intégré atteint plusieurs millions de transistors au cm². Il existe même une célèbre loi empirique, proposée par Moore, qui observe que le nombre de transistors que l'on peut placer sur un microprocesseur de surface donnée double tous les 18 mois. Cette loi est assez bien vérifiée en pratique depuis 50 ans !

25. En mécanique quantique, il existe un balancier permanent entre théorie et expérience. La technologie peut induire de nouvelles découvertes fondamentales, et réciproquement.
Ainsi, le transistor à effet de champ permet de créer à l'interface entre un oxyde et un semi-conducteur un gaz d'électrons bidimensionnel, qui a conduit à la découverte de « l'effet Hall quantifié ».

26. Cette nappe d'électron présente une propriété remarquable : lorsqu'on applique un champ magnétique perpendiculaire à sa surface, la chute de potentiel dans la direction transverse au courant se trouve quantifiée de manière très précise. Ce phénomène est appelé effet Hall entier (Klaus von Klitzing, prix Nobel 1985) ou effet Hall fractionnaire (Robert Laughlin, Horst Stormer et Daniel Tsui, prix Nobel 1998).

27. L'explication de ces phénomènes fait appel à des concepts fondamentaux de la physique moderne comme le phénomène de localisation d'Anderson, qui explique l'effet des impuretés sur la propagation des électrons dans un solide. Nous voyons donc encore une fois cette interaction permanente entre technologie et science fondamentale.
La supraconductivité :
28. Il existe donc des métaux, des isolants, des semi-conducteurs. Il existe un phénomène encore plus extraordinaire : la supraconductivité. Il s'agit de la manifestation d'un phénomène quantique à l'échelle macroscopique : dans un métal « normal », la résistance tend vers une valeur finie non nulle lorsque la température tend vers 0 alors que dans un métal supraconducteur, la résistance s'annule en dessous d'une certaine température dite critique. Les perspectives technologiques offertes par la supraconductivité paraissent donc évidentes car il serait alors possible de transporter un courant sans aucune dissipation d'énergie. Le problème est de contrôler la qualité des matériaux utilisés, et il serait évidemment merveilleux de pouvoir réaliser ce phénomène à température ambiante...

29. La supraconductivité a été découverte par Kammerlingh Onnes en 1911 quand il refroidit des métaux avec de l'hélium liquide à une température d'environ 4 degrés Kelvin.
30. Ce phénomène ne fut expliqué que 46 ans plus tard, car il fallait tout l'édifice de la mécanique quantique pour réellement le comprendre. Nous devons cette explication théorique à Bardeen, Cooper et Schieffer à la fin des années 1950.
31. Dans un métal, il y a une source naturelle d'attraction entre les électrons. On peut imaginer que chaque électron déforme légèrement le réseau cristallin et y attire un autre électron pour former ce que l'on nomme une paire de Cooper. Ces paires peuvent échapper au principe d'exclusion de Pauli car elles ont un Spin 0. Elles se comportent alors comme des bosons et non plus comme des fermions, et s'écroulent dans un même état d'énergie pour former un état collectif. Le matériau a un comportement analogue à l'état de superfluide de l'hélium 4. Toutes ces paires de Cooper sont donc décrites par une unique fonction d'onde, c'est un état quantique macroscopique. Il existe donc de nombreuses propriétés qui révèlent cet état quantique à l'échelle du matériau.

32. A la fin des années 1950, la théorie de la supraconductivité est enfin comprise et le but est maintenant d'augmenter la température critique. Une véritable course est alors lancée, mais celle-ci n'eut pas que des succès. Alors que en 1911 Kammerlingh Onnes observait la supraconductivité du mercure à une température de 4K, à la fin des années 80, nous en étions encore à environ 30K. En 1986, cette température critique fait un bond considérable et se trouve aujourd'hui aux alentours des 140K. La température de l'azote liquide étant bien inférieure à ces 140K, il est désormais moins coûteux d'obtenir des supraconducteurs.
33. Ces supraconducteurs possèdent des propriétés étonnantes. Par exemple, un champ magnétique ne peut pénétrer à l'intérieur d'un matériau supraconducteur. Ceci permet de faire léviter un morceau de supraconducteur en présence d'un champ magnétique !
34. Cette « lévitation magnétique » offre de nouvelles perspectives : il est par exemple possible de faire léviter un train au dessus de ses rails, il faut alors très peu d'énergie pour propulser ce train à de grandes vitesses. Un prototype japonais a ainsi atteint des vitesses de plus de 500km/h.

Les supraconducteurs permettent de créer des champs magnétiques à la fois très intenses et contrôlés, et servent donc pour l'imagerie par résonance magnétique (IRM). Ceci offre bien sûr de nouvelles possibilités en imagerie médicale.
Les supraconducteurs peuvent être également utilisés pour créer de nouveaux outils pour les physiciens : dans le nouvel accélérateur de particules au CERN à Genève, les aimants sont des supraconducteurs.
35. L'année 1986 voit une véritable révolution dans le domaine de la supraconductivité. Bednorz et Muller découvrent en effet une nouvelle famille de matériaux supraconducteurs qui sont des oxydes de cuivre dopés. En l'absence de dopage, ces matériaux sont des isolants non-conventionnels, dans lesquels le niveau de Fermi semble être dans une bande permise (isolants de Mott). La température critique de ces supraconducteurs est bien plus élevée que dans les supraconducteurs conventionnels : le record est aujourd'hui de 138 degrés Kelvin pour un composé à base de mercure. C'est une très grande surprise scientifique que la découverte de ces nouveaux matériaux, il y a près de vingt ans.
Des matériaux aux propriétés étonnantes :
36. Ces sont donc des isolants d'un nouveau type, dits de Mott. Ces matériaux sont isolants non pas parce que leur couche extérieure est pleine mais parce que les électrons voulant sauter d'un atome à l'autre par effet tunnel se repoussent mutuellement.

37. La compréhension de la physique de ces matériaux étonnants est un grand enjeu pour les physiciens depuis une vingtaine d'années. En particulier, leur état métallique demeure très mystérieux et ne fait à ce jour pas le consensus de la communauté scientifique.
38. Il est également possible de fabriquer des métaux à partir de molécules organiques, nous obtenons alors des « plastiques métalliques » pouvant également devenir supraconducteurs en dessous d'une certaine température (découverte par Denis Jérome et son équipe à Orsay en 1981). Le diagramme de phase des supraconducteurs organiques est au moins voire plus compliqué que celui des oxydes métalliques.
39. Actuellement, des recherches sont menées sur des alliages ternaire, et quaternaires qui semblent offrir encore de nouvelles propriétés. Par exemple, les oxydes de manganèse ont une magnétorésistance colossale, c'est-à-dire que leur résistance varie beaucoup en présence d'un champ magnétique. Cette particularité pourrait être utilisée dans le domaine de l'électronique de Spin, où on utilise le Spin des électrons, en plus de leur charge pour contrôler les courants électriques. Les oxydes de Cobalt, quant à eux, présentent la propriété intéressante d'être des thermoélectriques (i.e capables de produire un courant électrique sous l'action d'un gradient de température).
Il existe donc de très nombreux défis dans ce domaine, ils sont de plusieurs types. D'abord, l'élaboration de structures peut permettre de découvrir de nouveaux matériaux aux nouvelles propriétés qui soulèvent l'espoir de nouvelles applications.

Mais il existe aussi des défis théoriques : est il possible de prédire les propriétés d'un matériau à partir des lois fondamentales ? Des progrès importants ont été réalisés durant la seconde partie du XXème siècle et ont valu à Walter Kohn le prix Nobel de chimie. Cependant, ces méthodes ne sont pas suffisantes pour prédire la physique de tous les matériaux, en particulier de ceux présentant de fortes corrélations entre électrons. Les puissances conjuguées de la physique fondamentale et calculatoire des ordinateurs doivent être mise à service de ce défi. Par ailleurs, de nouveaux phénomènes apparaissent dans ces matériaux qui amèneront certainement des progrès en physique fondamentale.
La chimie, la physique et l'ingénierie des matériaux et de leurs propriétés électroniques semblent donc avoir de beaux jours devant eux !

 

VIDEO       CANAL  U         LIEN 

 

 
 
 
 

LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE

 

 

 

 

 

 

 

LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE

L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.

Transcription* de la 590e conférence de l’Université de tous les savoirs prononcée le 12 juillet 2005
Le monde quantique au quotidien : l’optoélectronique
Par Emmanuel Rosencher
Cet exposé propose de vous montrer comment la mécanique quantique, domaine abstrait, sophistiqué, voire ésotérique pour certains, est à la base de révolutions technologiques qui ont transformé notre quotidien. Nous montrerons tout d’abord comment la physique quantique est née de l’étude d’un composant optoélectronique (définissons l’optoélectronique comme étant l’étude de l’interaction qui a lieu entre la lumière et les électrons dans les solides). Nous montrerons ensuite comment la mécanique quantique a rendu la monnaie de sa pièce à l’optoélectronique en lui fournissant des briques de bases conceptuelles extrêmement puissantes, à partir desquelles un certains nombres de composants comme les détecteurs quantiques ou les émetteurs de lumière ont été réalisés. Nous présenterons enfin les défis actuels que l’optoélectronique tente de relever.
Là où tout commence : l’effet photoélectrique
Tout commence en 1887. Rudolph Hertz, célèbre pour la découverte des ondes Hertziennes, va découvrir l’effet photoélectrique, aidé de son assistant Philipp von Lenard. Cet effet va révolutionner notre compréhension de la lumière comme de la matière, bref, notre vision du monde. L’expérience qu’ils ont réalisée était pourtant on ne peut plus simple : deux plaques métalliques sont placées dans le vide. On applique à ces plaques une différence de potentiel. Le courant qui circule dans le système est mesuré. Comme les plaques métalliques sont placées dans le vide, les électrons n’ont pas de support pour passer d’une électrode à l’autre, et donc aucun courant ne peut circuler dans le système. Hertz décide alors d’illuminer une des plaques avec de la lumière rouge, il s’aperçoit que rien ne change. Par le hasard de l’expérience, il éclaire alors la plaque avec de la lumière bleue, et s’aperçoit cette fois qu’un courant commence à circuler. Il est important de noter que, même avec une grande intensité de lumière rouge, aucun courant ne circule, alors qu’une faible lumière bleue fait circuler le courant. Les deux savants concluent leur expérience par la phrase suivante, qui deviendra une des pierres fondatrices de la physique quantique : « il semble y avoir un rapport entre l’énergie des électrons émis et la fréquence de la lumière excitatrice. »

A la même époque, un autre grand savant, Max Planck, travaille sur un sujet totalement différent, à savoir le « spectre du corps noir » (voir figure 1): en d’autres termes, il étudie la lumière émise par des corps chauffés. Le fer, par exemple, une fois chauffé devient rouge. A plus haute température, il vire au jaune, puis au blanc. Max Planck étudie donc le fait que tous les corps chauffés vont avoir un comportement commun : à une température donnée, ils rayonneront principalement une certaine longueur d’onde. Par exemple, notre corps à 37°C émet des ondes à 10 μm (lumière infrarouge non visible). En revanche, à 5000°C (température correspondant à la surface du soleil), le maximum se déplace, le corps émet autour de 500 nm (jaune). Cette correspondance entre la température du corps noir et la nature de la lumière émise par ce corps va littéralement rendre fou toute une génération de physiciens qui n’arrivent pas à expliquer ce phénomène. Max Planck, au début du XXème siècle, déclarera à la société allemande de physique qu’il peut rendre compte de ce comportement. Pour cela, il doit supposer que la lumière arrive en paquets d’énergie et que chaque paquet d’énergie est proportionnel à la fréquence de la lumière, c’est-à-dire que l’énergie de chaque grain de lumière est le produit de la fréquence de cette onde par une constante, ridiculement petite
* transcription réalisée par Fabien Lienhart
(environ 6.10-34 J.s). S’il est persuadé d’avoir fait une grande découverte, Max Planck n’a pour autant pas la moindre idée de ce que sont ces « quanta » d’énergie qu’il a introduits dans
son calcul.
314
10000 1000 100 10 1
1000K
1 10
Longueur d'onde (μm)
300 K
313
Hertz
Emissivité (W/m2/μm)
figure 1
Spectre du corps noir (le fer chauffé de la photo émet des longueurs d’onde réparties sur la courbe bleue, la courbe rouge est émise par un humain qui n’a pas de fièvre)
Pendant ce temps, à la société Anglaise de physique, Lord Kelvin fait son discours inaugural, où il déclare que toute la physique est constituée, la récente théorie ondulatoire de Maxwell rendant très bien compte du comportement de la lumière. Il ne reste plus que quelques phénomènes incompris, d’un intérêt secondaire. Parmi ces phénomènes incompris figurent évidemment le spectre du corps noir, et l’effet se produisant dans la cellule photoélectrique. Albert Einstein va réaliser le tour de force de montrer que ces deux phénomènes ont une même origine, origine qu’il baptisera la dualité onde-corpuscule. L’hypothèse révolutionnaire d’Einstein est de dire que la lumière, considérée jusqu’alors comme une onde, est également une particule. A la fois onde et particule, la lumière véhicule ainsi une quantité d’énergie bien précise.

Le raisonnement d’Einstein se comprend bien sur un diagramme d’énergie, où est représentée l’énergie des électrons en fonction de leur position (voir figure 2). Pour être arraché du métal, un électron doit recevoir l’énergie qui lui permet d’échapper à l’attraction du métal. Cette énergie est appelée potentiel d’ionisation. Les électrons sont donc piégés dans le métal, et il leur faut franchir ce potentiel d’ionisation pour le quitter. L’hypothèse d’Einstein consiste à dire que la lumière est constituée de particules et que chaque particule a une énergie valant h.f, où h est la constante établie par Max Planck, et f la fréquence de la lumière. Si cette énergie h.f est inférieure au potentiel d’ionisation (comme c’est le cas pour la lumière rouge), aussi puissant que soit le faisceau de lumière, nous n’arracherons pas le moindre électron au métal. En revanche, si la lumière est bleue, la longueur d’onde est plus courte, ce qui correspond à une fréquence f plus grande, donc une énergie plus grande, les électrons vont alors acquérir l’énergie suffisante pour quitter le métal et aller dans le vide. Cette théorie permet donc d’expliquer le phénomène jusqu’alors incompris observé par Hertz et Leenard.
* transcription réalisée par Fabien Lienhart
Énergie des électrons
métal
h f h f’
vide
∆E
W= potentiel qui retient les électrons dans
le métal
figure 2 Diagramme d'énergie d'Einstein
Einstein ne se contente pas de cette explication, il propose une expérience permettant de vérifier son hypothèse. Si on mesure l’excès d’énergie des photons (représenté ∆E sur la figure 2), c’est-à-dire si on mesure l’énergie des électrons une fois qu’ils ont été arrachés par la lumière, on doit pouvoir en déduire la valeur de la constante de Planck h.
La théorie d’Einstein est accueillie à l’époque avec fort peu d’enthousiasme. La physique semblait jusqu’alors bien comprise, la lumière était une onde, et on rendait compte de l’écrasante majorité des phénomènes observés. Et Einstein vient tout bouleverser ! De nombreux scientifiques vont donc tenter de montrer que sa théorie est fausse. Notamment Millikan, qui va passer 12 années de sa vie à tester la prédiction d’Einstein. Millikan reconnaîtra finalement son erreur : son expérience montrera bien que l’énergie en excès dans les électrons est proportionnelle à la fréquence de la lumière excitatrice, et le coefficient de proportionnalité est bien la constante de Planck h.
Einstein venait d’unifier deux phénomènes qu’a priori rien n’apparentait : la lumière émise par un corps chauffé, et l’excès d’énergie d’un électron émis dans le vide. Ce lien existe, et c’est la physique quantique.
On peut donc relier la longueur d’onde de la lumière à son énergie (voir figure 3). Ainsi, le soleil qui rayonne principalement dans le jaune, c’est-à-dire à des longueurs d’onde d’environ 500 nm émet des photons de 2 eV (électron-volt). Le corps humain à 37°C rayonne une onde à 10 μm, ce qui correspond à des photons d’énergie 0,1eV. Rappelons qu’un électron-volt correspond à l’énergie d’un électron dans un potentiel électrique de 1V.
* transcription réalisée par Fabien Lienhart
Énergie (eV)
Longueur d’onde
X

UV

infrarouge
100
10 1 0,1 0,01
10 nm
100 nm
1 μm
10 μm 100 μm
figure 3
Correspondance entre longueur d'onde de la lumière et énergie du photon
Les briques de base
Comme nous l’avons mentionné en introduction, la physique entre alors dans un cercle vertueux : la technologie (par la cellule photoélectrique) fournit à la physique un nouveau concept fondamental, la physique quantique va en retour développer des outils conceptuels extrêmement puissants qui vont permettre le développement des composants optoélectroniques que nous allons étudier.

Les Semi-conducteurs
Avant d’entrer dans ce cercle vertueux, un concept manque encore à la physique quantique. Il va être proposé par le français Louis de Broglie en 1925. Ce dernier fait le raisonnement suivant : Einstein vient de montrer que la lumière, qui est une onde, se comporte comme une particule. Que donnerait le raisonnement inverse? Autrement dit, pourquoi la matière (les atomes, les électrons, tout objet ayant une masse) ne se comporterait-elle pas également comme une onde ? De Broglie va montrer qu’on peut associer à l’énergie d’une particule matérielle une longueur d’onde. Il montre notamment que, plus la particule a une énergie élevée, plus sa longueur d’onde est faible. La correspondance entre énergie et longueur d’onde pour la matière différera cependant de celle pour les photons, car les photons n’ont pas de masse.
Partant de cette hypothèse, Wigner, Seitz et Bloch se demandent ce que devient cette longueur d’onde lorsque l’électron est dans la matière, où il est soumis à un potentiel d’environ 5V. Leur calcul leur montre que sa longueur d’onde est alors d’environ 5 angströms (1 angström valant 10-10 mètres)... ce qui correspond à peu près à la distance entre atomes dans la matière.
* transcription réalisée par Fabien Lienhart
Cristal
Energie
figure 4
Comportement d'une onde électronique dans la matière et naissance de la structure de bandes
La physique quantique va alors donner une compréhension nouvelle et profonde du comportement des électrons dans la matière. Rappelons que la matière peut souvent être représentée par un cristal, c’est-à-dire un arrangement périodique d’atomes, distant de quelques angströms. Imaginons qu’une onde électronique (c’est-à-dire un électron) essaie de traverser le cristal. Si la longueur d’onde vaut 20 angströms, elle est très grande par rapport au maillage du cristal, et elle ne va donc pas interagir avec le cristal. Cette longueur d’onde va donc pouvoir circuler, on dira qu’elle est permise, et par conséquent l’énergie qui lui correspond est elle aussi permise (onde rouge sur la figure 4). Il y aura un très grand nombre de longueur d’ondes permises, auxquelles correspondront des bandes d’énergies permises. En revanche, si la longueur d’onde de l’électron est de l’ordre de 5 angströms (onde bleue sur la figure 4), c’est-à-dire de la distance être atomes, l’électron va alors résonner avec la structure du cristal, et l’onde ne va pas pouvoir pénétrer dans la matière. L’onde électronique est alors interdite dans la matière, et l’énergie qui lui correspond est également interdite dans la matière. Ainsi on voit apparaître, pour décrire les électrons dans la matière, une description en termes de bandes permises et de bandes interdites. Nous appellerons la bande permise de plus basse énergie (sur la figure 5) la bande de valence, et la bande permise au-dessus d’elle la bande de conduction.
A partir de cette structure de bandes, Pauli va montrer que les atomes peuplent d’abord les états de plus basse énergie. Ils vont ainsi remplir complètement la bande de valence, et laisser la bande de conduction vide. Il montre alors que dans une telle configuration les électrons ne peuvent pas conduire l’électricité.
* transcription réalisée par Fabien Lienhart
Bande d’énergies interdites
énergie
Bande de conduction
Bande d’énergies interdites
Bande de valence
figure 5
Les électrons de la bande de valence, comme les pièces d'un jeu de taquin
Pour illustrer ses propos, comparons la matière à un jeu de taquin (figure 5). Rappelons que le taquin est un puzzle fait de pièces carrées et où ne manque qu’une pièce. C’est l’absence d’une pièce qui permet de déplacer les pièces présentes. Pour Pauli, une bande de valence pleine d’électrons, est comme un taquin qui n’aurait pas de trous : aucun élément ne peut bouger, car toutes les cases sont occupées. C’est pourquoi beaucoup de matériaux, notamment les semi-conducteurs (qui, comme leur nom l’indique sont de mauvais conducteurs), ne peuvent pas conduire le courant, leur bande de valence étant trop pleine. Pour conduire l’électricité, il va être nécessaire de prendre des électrons de la bande de valence, et de les envoyer dans la bande de conduction. Alors les rares électrons dans la bande de conduction auront tout l’espace nécessaire pour bouger, ils conduiront aisément le courant. De plus, ces électrons auront laissé de la place dans la bande de valence, ce qui revient, dans notre image, à enlever une pièce au taquin. Les électrons pourront alors bouger, mal, mais ils pourront bouger. Ce déplacement des électrons dans la bande de valence peut être réinterprété : on peut considérer qu’un électron se déplace pour occuper une place vacante, puis qu’un autre électron va occuper la nouvelle place vacante, et ainsi de suite... ou on peut considérer que nous sommes en présence d’un trou (une absence d’électron) qui se déplace dans le sens opposé au mouvement des électrons ! Cette interprétation nous indique alors que, dans la bande de valence, ce ne sont pas les électrons qui vont bouger, ce sont les « absences d’électrons », c’est-à-dire des trous, qui sont, de fait, de charge positive.

Wigner, Pauli et Seitz venaient de résoudre une énigme qui datait du temps de Faraday (1791- 1867), où l’on avait observé des charges positives se déplaçant dans la matière sans avoir idée de ce que c’était. Il s’agit en fait des trous se déplaçant dans la bande de valence. Pour la
* transcription réalisée par Fabien Lienhart
suite, nous nous intéresserons donc aux électrons se trouvant dans la bande de conduction, et aux trous de la bande de valence.
Comment envoyer ces électrons de la bande de valence vers la bande de conduction ? En utilisant le photon ! Le photon va percuter un électron de la bande de valence et créer une paire électron-trou, c’est-à-dire qu’il va laisser un trou dans la bande de valence et placer un électron dans la bande de conduction. Il s’agit d’un phénomène d’absorption car au cours de ce processus, le photon disparaît. Il a été transformé en paire électron-trou.

Evidemment le mécanisme inverse est possible : si on arrive à créer par un autre moyen une paire électron-trou, l’électron va quitter la bande de conduction pour se recombiner avec le trou dans la bande de valence, et émettre un photon. La longueur d’onde du photon émis correspondra à l’énergie de la bande interdite (energy gap en anglais). Il y a donc une correspondance fondamentale entre la couleur du photon émis et l’énergie de la bande interdite.
Energie du gap en eV
Distance inter-atomique en
figure 6
Gap d’énergie et distance inter-atomiques des principaux semi-conducteurs
La figure 6 montre l’énergie de la bande interdite pour différents matériaux. On constate que certains matériaux se retrouvent sur la même colonne, c’est-à-dire qu’ils ont la même distance inter-atomique. C’est le cas par exemple de l’Arséniure de Gallium (GaAs) et de l’Aluminure d’Arsenic (AlAs). Etant des « jumeaux cristallographiques », il sera aisé de les mélanger, les faire croître l’un sur l’autre. En revanche, ils ont des bandes d’énergie interdite très différente. A partir de ce graphique, on peut donc conclure quel semi-conducteur conviendra à la lumière que l’on veut produire. Ainsi, la lumière rouge sera émise par le Phosphure de Gallium (GaP). Pour aller dans l’infrarouge lointain, un mélange entre CdTe et HgTe est cette fois préconisé.
Le dopage et la jonction P-N
* transcription réalisée par Fabien Lienhart
UV
Visible
Infrarouge proche
Infrarouge lointain
Nous venons de présenter la première brique de l’optoélectronique, à savoir l’énergie de la bande interdite. La deuxième brique qui va nous permettre de réaliser des composants optoélectroniques va être le dopage. Comme nous l’avons dit précédemment, un semi- conducteur, si on n’y ajoute pas des électrons, conduit aussi bien qu’un bout de bois (c’est-à- dire plutôt mal !). Pour peupler la bande de valence, nous allons utiliser le dopage.

Nous nous intéresserons aux éléments des colonnes III, IV et V de la classification périodique des éléments de Mendeleïev (une partie en est représentée figure 7). Le numéro de la colonne correspond au nombre d’électrons se trouvant sur la dernière couche électronique. Ainsi les éléments de la colonne IV, dits tétravalents, comme le Carbone et le Silicium, possèdent IV électrons sur leur dernière couche. Dans la colonne III (éléments trivalents), nous trouverons le Bore, et dans la colonne V (éléments pentavalents) se trouve le Phosphore.
Si Siδ+ Si Si B- Si
Si Si Si
Dopage p
Mendeleïev
Si Si
Si P+ Si Si
Dopage n
Si
Si Si
B
C
Si
P
* transcription réalisée par Fabien Lienhart
III
IV
V
figure 7
Dopage de type P et dopage de type N
Regardons ce qui se passe si on introduit un élément pentavalent dans un cristal de Silicium. On peut dire que le Phosphore, tel l’adolescent dans une cour d’école, veut à tout prix ressembler aux copains. Ainsi, le Phosphore va imiter le Silicium et construire des liaisons électroniques avec 4 voisins. Il va donc laisser un électron tout seul. Cet électron va aller peupler la bande de conduction. C’est ce qu’on appelle le dopage de type N. Le Phosphore joue le rôle de Donneur d’électrons.
Le raisonnement est le même pour des éléments trivalents comme le Bore. Ce dernier va mimer le comportement du Silicium en créant 4 liaisons électroniques. Pour cela, il va emprunter un électron à la structure de Silicium, consommant ainsi un électron dans la bande de valence. Il crée donc un trou dans la bande de valence. Le dopage est dit de type P. Le Bore joue le rôle d’Accepteur d’électrons.
Le dopage n’est pas un processus aisé à réaliser. A l’heure actuelle, nous n’avons toujours pas trouvé le moyen de doper efficacement certains semi-conducteurs (c’est le cas du diamant par exemple). Pour le Silicium (Si) et l’Arséniure de Gallium (GaAs), le dopage est en revanche bien maîtrisé.
On va alors pouvoir réaliser des jonctions P-N (figure 8). Il s’agit en fait de juxtaposer un matériau dopé P avec un matériau dopé N. Dans la zone dopée N, le Phosphore a placé de nombreux électrons dans la bande de conduction. La zone dopée P quant à elle possède de nombreux trous dans la bande de valence. Nous sommes ainsi en présence d‘électrons et de trous qui se « regardent en chiens de faïence ». Ils vont donc se recombiner. Ainsi, à l’interface, les paires électrons trous vont disparaître, et laisser seules des charges négatives
dans la zone dopée P, et des charges positives dans la zone dopée N. Ces charges fixes (qui correspondant en fait aux atomes dopants ionisés) vont créer un champ électrique. Cette jonction P-N sera au cœur de très nombreux composants optoélectroniques.
P
N
figure 8
Jonction P-N: les électrons de la zone N se recombinent avec les trous de la zone P, laissant des charges nues dans une zone baptisée zone de charge d'espace. Les charges fixes induisent un champ électrique.
Le Puits Quantique
Dernière brique de l’optoélectronique que nous présenterons : le puits quantique. Ce dernier peut être considéré comme le fruit du progrès technologique. Dans les années 70-80, les ingénieurs étudient l’Ultra-Vide, c’est-à-dire les gaz à très basse pression (10-13 atmosphère). Comme il s’agit d’un milieu extrêmement pur, bien vite on se rend compte, que cela reproduit les conditions primordiales dans lesquelles les matériaux ont été créés. Dans un tel milieu, on va alors pouvoir « jouer au bon dieu » et empiler des couches d’atomes, créer des structures artificielles qui n’existent pas dans la nature.
Typiquement, il va être possible de réaliser des sandwichs de matériaux, où par exemple de l’Arséniure de Gallium (GaAs) serait pris entre deux tranches d’un matériau qui lui ressemble, AlGaAs (nous avons vu précédemment que AlAs et GaAs sont miscibles). Sur la photo (figure 9), issue d’un microscope électronique nous permettant d’observer les atomes, on voit que ces matériaux n’ont aucun problème à croître l’un sur l’autre. La couche de GaAs ne mesure que 20 angströms.
* transcription réalisée par Fabien Lienhart

Champ électrique
AlGaAs     GaAs     AlGaAs
2 1
figure 9
Puits quantique. En haut, sa composition. Au milieu une photo au microscope électronique d’une telle structure. En bas, diagramme d’énergie du puits quantique, la forme des oscillations de l’électron a également été représentée
Examinons le comportement de l’électron dans un tel milieu. Le GaAs a plus tendance à attirer les électrons que AlGaAs. L’électron se trouve piégé dans un puits de potentiel. C’est alors qu’intervient la mécanique quantique, réinterprétant le puits de potentiel en « puits quantique ». L’électron est une onde, une onde prisonnière entre deux murs (les barrières de potentiel formées par l’ AlGaAs). L’électron ne va avoir que certains modes d’oscillation autorisés, comme l’air dans un tuyau d’orgue qui ne va émettre que des sons de hauteur bien définie.
Techniquement, il nous est possible de créer à peu près n’importe quel type de potentiel, puisqu’on est capable de contrôler l’empilement des atomes. Par exemple, plus on élargit le puits quantique, plus il y a de modes d’oscillation possibles pour l’électron, et plus il y a de niveaux d’énergies accessibles à l’électron. On peut ainsi synthétiser la répartition de niveau d’énergies que l’on souhaite.
Nous avons à présent un bon nombre d’outils de base que nous a fournis la mécanique quantique : la structure de bandes, le dopage et la jonction P-N qui en découle, et pour finir, le puits quantique. Nous allons à présent voir comment ces concepts entrent en jeu dans les composants optoélectroniques.
* transcription réalisée par Fabien Lienhart
La détection quantique
Le principe de la photo-détection quantique (utilisé dans tous les appareils photo numérique) est extrêmement simple : il s’agit, à l’aide d’un photon, de faire transiter l’électron entre un niveau de base, où il ne conduit pas l’électricité, et un niveau excité où il va la conduire. Le semi-conducteur pur peut par exemple faire office de photo-détecteur quantique (figure 10): à l’état de base, il ne conduit pas le courant, mais un photon peut créer, par effet photoélectrique, une paire électron-trou et placer un électron dans la bande de conduction, permettant le transport du courant.
BC
BV
BC
Transition inter-sousbande figure 10
Transition interbande
Deux mécanismes de détection quantique. A gauche, on utilise la structure de bande d'un semi-conducteur. A
droite, un puits quantique.
Un puits quantique peut également réaliser cette fonction (figure 10): les électrons se trouvent piégés dans le puits quantiques, car la barrière d’AlGaAs les empêche de sortir, mais par absorption d’un photon, les électrons vont avoir l’énergie leur permettant de sortir du piège et donc de conduire le courant.
L’effet Photovoltaïque
Le détecteur quantique le plus répandu est la cellule photovoltaïque. Elle est constituée d’une jonction P-N. Imaginons que des photons éclairent la structure. Dans la zone ionisée (appelée zone de charge d’espace), ils vont alors créer des paires électron-trou. Mais cette région possédant un champ électrique du fait des charges fixes, les électrons vont être attirés par le Phosphore, les trous par le Bore, ce qui va générer un courant électrique.

* transcription réalisée par Fabien Lienhart
figure 11
Cellule photovoltaïque. En haut, la jonction P-N reçoit des photons qui créent des paires électron-trou. En bas, diagramme d'énergie montrant les électrons de la bande de conduction tombant dans la zone N, et les trous de la bande de valence remontant dans la zone P.
On peut représenter ce mécanisme sur un diagramme d’énergie (figure 11). Le champ électrique présent au niveau de la jonction P-N provoque une courbure de la bande de valence et de la bande de conduction. Le photon va créer une paire électron-trou. L’électron va glisser le long de la pente de la bande de conduction, et se retrouver dans la zone dopée N, tandis que le trou, tel une bulle dans un verre de champagne, va remonter la bande de valence et se retrouver dans la zone dopée P.
Les caméras CCD
Techniquement, il existe des technologies pour synthétiser ces minuscules détecteurs par millions en une seule fois. Ces détecteurs ont changé notre vie quotidienne. En effet, au cœur de tous les appareils photo et caméscopes numériques se trouve une matrice CCD (charge coupled devices). Il ne s’agit pas exactement de jonctions P-N, mais d’une myriade de transistors MOS. Néanmoins les concepts physiques mis en jeu sont tout à fait analogues. Il s’agit d’une couche semi-conductrice de Silicium séparée d’une couche métallique par une couche isolante d’oxyde. Lorsqu’un photon arrive dans la zone courbée du diagramme de bande (c’est là encore, la zone de charge d’espace), une paire électron-trou est créée, les électrons vont s’accumuler à l’interface entre le semi-conducteur et l’isolant, il vont alors pouvoir être « évacués » par les transistors qui vont récupérer les « tas d’électrons » et se les donner, comme des pompiers se passant des bacs d’eau (d’où leur nom). Les matrices CCD actuelles ont des caractéristiques vertigineuses, contenant aisément 10 millions de pixels mesurant chacun 6 μm x 6 μm.
* transcription réalisée par Fabien Lienhart
Paquet d’électrons photocréés
Métal Oxide Silicium
figure 12
Matrice CCD. A gauche, diagramme d'énergie d'un transistor MOS (Métal Oxide Silicium). A droite, photo d'une matrice CCD
Les détecteurs infrarouges
Un deuxième type de détecteurs très importants sont les détecteurs infrarouge, notamment ceux détectant les longueurs d’onde comprises entre 3 et 5 μm, et entre 8 et 12 μm. Comme nous l’avons mentionné au début, le corps humain à 37°C rayonne énormément de lumière, sur toute une gamme de longueurs d’onde (représentée en bleu sur la figure 13), centrée autour de 10 μm. Mais l’atmosphère ne laisse pas passer toutes les longueurs d’onde (la courbe rouge représente la transmission de l’atmosphère). Et justement entre 3 et 5 μm, et entre 8 et 12 μm, elle a une « fenêtre de transparence ». En particulier, à plus haute altitude, un avion peut voir à plusieurs centaines de kilomètres dans la bande 8-12 μm. Un autre intérêt de détecter cette gamme de longueur d’onde est qu’elle correspond à l’absorption de certains explosifs qui seraient alors détectables.
1.0 0.8 0.6 0.4 0.2 0.0
2 4 6 8 10 Longueur d'onde (μm)
12
figure 13
Spectre de transmission de l'atmosphère (courbe rouge), et spectre d'émission du corps humain, c'est-à-dire d'un corps noir à 37°C (courbe bleue)
Comment réaliser ces détecteurs autour de 5 et de 10 μm (c’est-à-dire ayant un gap d’énergie de 0,1 à 0,2 eV)? La figure 6 nous indique que le couple CdTe (Tellure de Mercure) - HgTe (Tellure de Cadmium) est un bon candidat. Notons au passage que la France, grâce
* transcription réalisée par Fabien Lienhart
Transmission
notamment aux laboratoires du CEA et de l’ONERA) est leader mondial dans ce domaine. Avec de tels détecteurs, il devient possible de voir des avions furtifs, indétectables par radar. Des applications existent aussi dans le domaine médical, où ces capteurs permettent de déceler certaines variations locales de température sur une simple image. Il est également possible de détecter le niveau de pétrole à l’intérieur d’un conteneur, l’inertie thermique du pétrole différant de celle de l’air.
Mauvaise vascularisation d’une main Niveau de carburant Image d’un avion furtif en infrarouge figure 14
Exemples d'images prises par des détecteurs infrarouges (source : www.x20.org)
Les cellules solaires
Dernier type de détecteur que nous examinerons : les cellules solaires, qui transforment la lumière en électricité. Le matériau roi (parce que le moins cher) dans ce domaine est le Silicium. Malheureusement son rendement quantique n’est pas bon (15%), c’est-à-dire que le Silicium absorbe très bien le rayonnement à 1 eV, tandis que le soleil émet essentiellement entre 2 à 3 eV. Des recherches sont actuellement menées afin de développer des matériaux absorbant plus efficacement dans ces gammes d’énergie. Ces recherches sont extrêmement importantes pour les nouvelles sources d’énergie.

Les émetteurs de lumière
Diodes électroluminescentes
On se rappelle qu’en se recombinant, les paires électron-trous créent un photon. Réaliser un émetteur de lumière est donc possible à partir d’un puits quantique (figure 15). Ce dernier confine les électrons. Prenons, comme précédemment, le cas d’un puits quantique de GaAs « sandwiché » entre deux domaines d’AlGaAs. Cette fois, nous dopons N l’AlGaAs se trouvant d’un côté du puits, et P l’AlGaAs se trouvant de l’autre côté. Si on fait passer du courant dans cette structure, les électrons de la zone dopée N vont tomber dans le puits quantique, les trous de la zone dopée P vont monter dans le puits de la zone de valence. Une fois dans le puits quantique, électrons et trous vont se recombiner et émettre un photon. Ce composant est appelé Diode Electroluminescente (LED). Ce n’est ni plus ni moins qu’un photo-détecteur dans lequel on a forcé le courant à passer.
* transcription réalisée par Fabien Lienhart
AlGaAs N     GaAs     AlGaAs P


figure 15
Diagramme d'énergie d'une diode électroluminescente. Trous de la zone P et électrons de la zone N vont être piégés dans le puits quantique et se recombiner en émettant de la lumière
Les LED remplissent, elles aussi notre quotidien. Elles ont un énorme avantage sur d’autres type d’éclairage : le processus de création de photon d’une LED est extrêmement efficace. En effet, dans une LED chaque électron donne un photon. Ainsi avec un courant d’un ampère, on obtient une puissance lumineuse d’environ un Watt, alors qu’une ampoule ne donnera que 0,1W pour le même courant. L’utilisation plus répandue des LED pour l’éclairage aura un impact extrêmement important pour les économies d’énergie et l’environnement. A l’heure actuelle, elles sont utilisées dans nos télécommandes, les panneaux d’affichages, les feux de signalisation.
Depuis quelques temps les diodes rouges, orange et vertes existent. La diode bleue, plus récemment apparue a connue une histoire insolite. En 1974, des ingénieurs se penchent sur le problème de la réalisation d’une telle diode, et trouvent qu’un matériau possède le gap d’énergie adéquat (3-4 eV) : le Nitrure de Gallium (GaN). Ils vont alors chercher à le doper... pendant 10 ans... sans succès. En 1984, un grand théoricien soutient, démonstration à l’appui, qu’il n’est théoriquement pas possible de doper un tel semi-conducteur. Toutes les équipes arrêtent alors progressivement leurs recherches sur le sujet... toutes, sauf une. Celle du Dr. Nakamura (qui sans doute n’avait pas lu l’article de l’éminent théoricien) de la société Japonaise Nichia. En 1993, il trouve que le Magnésium (Mg) dope le Nitrure de Gallium ! Dix ans après, sa découverte a révolutionné le marché de l’optoélectronique. En effet, avec les autres couleurs de LED, il est à présent possible de réaliser d’immenses écrans publicitaires...
Diodes lasers
Etudions à présent l’émission stimulée. Nous avons vu que le semi-conducteur pouvait absorber un photon, qu’il pouvait également en émettre s’il possède un électron dans sa bande de conduction. En 1917, Albert Einstein s’aperçoit qu’il manque un mécanisme dans cette description de l’interaction entre la lumière et la matière. Par une démarche purement théorique, il va découvrir un nouveau phénomène : l’émission stimulée (figure 16).
Dans l’émission stimulée, l’électron est dans l’état excité. Arrive alors un photon, qui va stimuler la désexcitation de l’électron. Cette désexcitation va naturellement s’accompagner de
* transcription réalisée par Fabien Lienhart
l’émission d’un autre photon, dit photon stimulé. Si on se trouve dans un matériau où beaucoup d’électrons sont excités, un photon va alors pouvoir donner 2, puis 4, puis 8 ... photons ! Ce phénomène est appelé l’amplification optique.

Absorption Émission Émission spontanée stimulée
figure 16
Diagramme des mécanismes d'absorption, d'émission spontanée, et d'émission stimulée
Il est alors possible de réaliser un LASER. Pour cela, il suffit de placer deux miroirs aux extrémités de l’amplificateur optique. La lumière va être amplifiée lors d’un premier passage, une partie va être émise en dehors de la cavité, l’autre partie va être réfléchie et refaire un passage dans le milieu amplificateur. La même chose se produit sur le deuxième miroir. Si après un tour on a plus d’énergie qu’au départ, nous sommes face à un phénomène d’avalanche où le nombre de photons créés va croître très rapidement. Le système se met à osciller, c’est l’oscillation LASER.
John von Neumann, l’inventeur de l’ordinateur, prévoit que les semi-conducteurs devraient permettre de réaliser des lasers. En effet en partant d’un puits quantique et en y plaçant beaucoup d’électrons et de trous, nous allons obtenir notre milieu amplificateur. En plaçant des miroirs aux extrémités du puits quantique, on obtient alors un laser (figure 17). Le laser à semi-conducteur sera découvert 50 ans après, et par 3 laboratoires différents (General Electric, IBM et Bell Labs) en l’espace de 10 heures !
n
p
figure 17
Schéma d'une diode laser. Le milieu à gain est constitué par la jonction P-N. A ses extrémités des miroirs forment la cavité, et laissent sortir un faisceau laser unidirectionnel
L’intérêt du laser à semi-conducteur est qu’on peut concentrer toute la puissance lumineuse sur un fin pinceau lumineux. Là encore, les applications sont nombreuses : pointeurs, lecteur de CD, télécommunications... Revenons un instant sur l’importance des matériaux émettant dans le bleu (le Nitrure de Gallium). Le laser bleu va en effet avoir des retombées importantes dans le domaine des disques lasers. Le principe du lecteur de disque est d’envoyer un laser sur la surface du disque qui réfléchit (ou non) la lumière, lumière qui est alors lue par un
* transcription réalisée par Fabien Lienhart
détecteur quantique. La surface du disque est criblée de trous stockant les bits d’information. Il se trouve que la dimension minimale d’un faisceau laser correspond à la longueur d’onde qu’il émet. Ainsi la tâche d’un laser rouge est de 0,8 μm, tandis que celle d’un faisceau bleu est de 0,4 μm. On pourra donc lire 4 fois plus d’information avec un laser bleu Les diodes bleues vont donc progressivement (et rapidement) remplacer les diodes rouges des lecteurs de disques.
La lumière d’un laser va également pouvoir être envoyée à l’intérieur d’une fibre optique, qui est une structure guidant la lumière au cœur d’un guide en verre (silice) de 4 μm de diamètre. La fibre optique permet alors de transporter énormément d’information extrêmement rapidement. A l’heure actuelle, les fibres optiques permettent d’envoyer en un dixième de seconde tout le contenu de l’Encyclopedia Universalis à 3000 km ! Cette révolution technologique, fruit de l’optoélectronique, est à la base du succès d’Internet.
Les nouvelles frontières
L’optoélectronique est un des domaines scientifiques les plus effervescents à l’heure actuelle, et de nombreuses technologies encore balbutiantes semblent très prometteuses dans un proche future : il s’agit par exemple des cristaux photoniques, des oscillateurs paramétriques optiques, de la nano-optique,... Nous nous intéresserons ici aux nouvelles longueurs d’ondes ainsi qu’au domaine des attosecondes.

Les ondes Térahertz
L’optoélectronique investit aujourd’hui de nouvelles longueurs d’onde, et ne se cantonne plus au domaine du visible et de l’infrarouge. Ces ondes appartiennent à la famille des ondes électromagnétiques (figure 18), qui renferme également, les ondes radio, les ondes radars et micro-ondes,... Entre les ondes radio et les ondes optiques, se trouve le domaine des ondes dites Térahertz (THz), qui jusqu’à peu ne disposaient pas de sources efficaces. L’optoélectronique développe actuellement de nouvelles sources lasers dans ce domaine, resté pendant longtemps une terra incognita.
Radio et hyperfréquences
Optique
100 THz 3 μm 0.4 eV
HF VHF UHF P L S C X Ku K Ka W     THz     LWIR SWIR NIR     UV
10 MHz 30 m
40 neV
100 MHz 3 m
0.4 μeV
1 GHz 30 cm 4 μeV
10 GHz
3 cm
40 μeV
100 GHz
3 mm
0.4 meV
1 THz 300 μm 4 meV
10 THz 30 μm 40 meV
1 PHz 300 nm 4 eV
figure 18
Le spectre des ondes électromagnétiques
De telles sources permettront de développer de nouveaux systèmes de sécurité, car ils permettront notamment de voir à travers les vêtements. En effet, même au travers de matériaux opaques, les photons pénètrent, sur une longueur de quelques longueurs d’onde. Dans le cas des ondes Térahertz, la longueur d’onde est de 300 μm, le photon va pénétrer un matériau opaque sur plusieurs millimètres ! L’onde Térahertz pourra ainsi traverser les vêtements. La figure 19 montre comment un couteau caché par un journal a pu être détecté par de l’imagerie Térahertz.
* transcription réalisée par Fabien Lienhart
figure 19
Image d'une scène dans le visible (à gauche) et dans les Térahertz (à droite). La grande longueur d'onde des ondes Térahertz permet de traverser les vêtements et les journaux.
(Jefferson Lab : www.jlab.org)
Les attosecondes
Une autre percée réalisée par l’optoélectronique concerne l’étude des temps très courts. Le domaine des attosecondes est désormais accessible à l’expérience. Une attoseconde ne représente que 0,000 000 000 000 000 001 seconde (10-18 seconde)! Il y a autant d’attosecondes dans une seconde que de secondes écoulées depuis la création de l’univers. Pour créer des impulsions aussi courtes, il faut des ondes ayant des fréquences très élevées. L’impulsion la plus courte qu’on puisse faire avec une onde consistera à ne prendre qu’une seule oscillation de l’onde. L’optoélectronique nous propose des techniques qui permettent de ne découper qu’une seule oscillation du champ électromagnétique. Si on prend de la lumière visible (de fréquence 1015 Hz), on est capable de découper une tranche de 10-15 seconde (une femtoseconde). On peut aujourd’hui aller encore plus loin, et atteindre le domaine des attosecondes.

La figure 20 montre en fonction du temps les plus petites durées atteignables par l’électronique et par l’optoélectronique. L’électronique, ayant des fréquences limitées à quelques gigahertz (GHz) est actuellement limitée, tandis que l’optique, avec des photons aux fréquences bien plus élevées permet de sonder des durées bien plus faibles.
* transcription réalisée par Fabien Lienhart
10–6 10–9
10–12 10–15
Electronique     Optoélectronique

1960
Evolution des plus petites durées mesurables par l'électronique et l'optoélectronique dans les 40 dernières
1970
1980 Année
1990
2000
figure 20 années
L’électron met environ 150 attosecondes pour « faire le tour » de l’atome d’Hydrogène. Nous devrions donc avoir d’ici peu les techniques permettant d’observer ce mouvement ! On retrouve le cercle vertueux que nous avions évoqué au début : la science fondamentale a fourni des technologies, et ces technologies, en retour, fournissent aux sciences fondamentales des possibilités d’observer de nouveaux domaines du savoir et de la connaissance de l’univers.


* transcription réalisée par Fabien Lienhart

 

 VIDEO       CANAL  U         LIEN 

 
 
 
 

LES NEUTRINOS, DES PARTICULES SURPRENANTES

 

 

 

 

 

 

 

LES NEUTRINOS, DES PARTICULES SURPRENANTES

Les neutrinos sont des particules élémentaires intéragissant très peu avec la matière. Depuis 70 ans ils jouent un rôle prépondérant en physique des particules. Les progrès de ces dernières années ont été époustouflants, sinon surprenants. Nous savons désormais que les neutrinos sont massifs! Je reprendrai pas à pas l'épopée des neutrinos pour dévoiler comment plusieurs générations de physiciens ont révélé les secrets de ces particules fantomatiques, et utilisé les neutrinos pour sonder à la fois l'infiniment petit et l'infiniment grand. J'insisterai sur les développements expérimentaux récents et je discuterai finalement des recherches actuelles.

Les neutrinos, des particules surprenantes !
par Thierry Lasserre
Qu'est-ce qu'un neutrino ?
Tout comme l'électron, le neutrino est une particule élémentaire, c'est à dire un constituant de la matière qui ne nous apparaît pas aujourd'hui comme composé d'éléments encore plus petits. On le désigne par la lettre grecque n. Dans la nomenclature des physiciens des particules, il appartient à la catégorie des leptons qui comprend aussi l'électron, le muon, et le tau. Les deux derniers sont des cousins de l'électron, mais respectivement 200 fois et 3500 fois plus massifs. Les leptons sont organisés en trois familles associées: électronique, muonique, et tauique. Nous verrons qu'il existe trois types de neutrinos (on parle souvent de trois saveurs). A chaque lepton correspond un anti-lepton, de même masse, mais de charge électrique opposée. Les leptons possèdent un spin[1] ½, ils appartiennent donc à la catégorie plus générale des fermions (du nom d'Enrico Fermi).
Selon le modèle standard de la physique des particules (MSPP), la masse des neutrinos est nulle. Toutefois, nous verrons qu'une série d'expériences a démontré qu'elle est différente de zéro, encore que très petite par rapport à celles des autres leptons (au moins 250 000 fois plus faible). C'est une découverte fondamentale très récente qui va sans doute faire évoluer le MSPP dans les prochaines années.
A l'échelle du noyau atomique, les neutrinos interagissent uniquement par l'intermédiaire de l'interaction faible car ils sont insensibles aux interactions forte et électromagnétique. En effet, ils ne portent ni de charge de couleur, ni de charge électrique. En conséquence, la probabilité d'interaction d'un neutrino avec la matière est extrêmement faible : un neutrino issu d'une désintégration radioactive traverse, en moyenne, une épaisseur de plomb d'une année-lumière (dix mille milliards de kilomètres) avant d'interagir !

Découverte des neutrinos
Au début du XXe siècle, la radioactivité à peine découverte était soigneusement étudiée au sein des laboratoires. Les désintégrations de type b (bêta) étaient déjà identifiées comme responsables de la transmutation d'un noyau atomique en un autre élément voisin dans la classification de Mendeleïev. Lors d'un processus b, le noyau radioactif émet un électron (ou rayon b) et change sa charge électrique d'une unité, en transformant un proton en neutron ou vice versa. Un exemple familier est celui du tritium 3H, l'isotope le plus lourd de l'hydrogène (1 proton et 2 neutrons), qui se désintègre en hélium 3He (2 protons et 1 neutron) et émet un électron.

Les expérimentateurs de l'époque entreprirent de mesurer précisément l'énergie de l'électron émis, afin de mieux comprendre la structure des noyaux atomiques. D'après les lois de conservation de l'énergie et de l'impulsion[2], ils savaient prédire le partage d'énergie qui devait s'opérer uniquement entre l'électron et le noyau de recul. L'électron devait en principe toujours emporter la même quantité d'énergie. A la grande stupéfaction de tous, James Chadwick montra en 1914 que tel n'est pas le cas : les électrons ont un spectre continu en énergie, entre zéro et l'énergie attendue dans le cas d'une réaction à deux corps ! Cela pouvait signifier qu'une partie de l'énergie s'évanouissait dans les processus b ...
En 1930 le physicien Wolfgang Pauli se risqua à sauver la loi sacro-sainte de la conservation de l'énergie en proposant, selon ses propres termes, « un remède désespéré ». Il invoqua l'existence d'une nouvelle particule partageant l'énergie du processus b avec l'électron et le noyau. Afin de s'ajuster aux données expérimentales, cette nouvelle particule devait être électriquement neutre, de spin demi entier, et de masse inférieure à celle de l'électron. Cette particule, fut nommée plus tard neutrino, littéralement « petit neutre », par Fermi. Une fois créé, le neutrino s'échappait de la zone de détection à une vitesse très proche de celle de la lumière, et laissait croire, si on l'ignorait dans le bilan de la réaction, que la loi de conservation de l'énergie était violée. Peu de temps après, le génial Fermi formula une théorie mathématique des désintégrations b qui rendait parfaitement compte de tous les résultats expérimentaux. Il introduisit la notion de force faible (en comparaison à la force électromagnétique) qui transforme un proton en un neutron, en créant simultanément un électron et un anti-neutrino. Aussitôt, Hans Bethe et Rudolf Peierls suggérèrent une réaction permise par la théorie de Fermi pour détecter indirectement l'insaisissable : la capture d'un neutrino (ou anti-neutrino) par un noyau et l'émission simultanée d'un électron (ou anti-électron). Malheureusement la petitesse de la force faible semblait réduire leurs espoirs à néant ...
En 1951, les physiciens de Los Alamos Fred Reines et Clyde Cowan, qui travaillaient alors sur les essais nucléaires américains, songèrent utiliser la bouffée considérable de neutrinos électroniques émise dans la furie d'une explosion atomique[3] afin de détecter une poignée de neutrinos. La réaction la plus prometteuse était la désintégration b inverse, anti-ne + p à e+ + n, ou p est le noyau d'hydrogène (proton), e+ l'anti-électron (ou positron), et n le neutron ( figure 1). Ils usèrent de la technique des liquides scintillants, découverts quelques années auparavant. De tels liquides aromatiques servent à la fois de cible puisqu'ils contiennent énormément de protons et de milieu de détection car ils permettent de « matérialiser » les traces que laissent le positron et le neutron[4]. En effet, un bref flash de lumière visible (quelques nanosecondes) est émis chaque fois qu'une particule chargée ou un rayon gamma traverse le milieu. Cette lumière, dont l'intensité est proportionnelle à l'énergie des particules incidentes, est ensuite collectée par des capteurs ultrasensibles aux photons visibles, appelés tubes photomultiplicateurs (TPM). Les flashs lumineux sont alors convertis en signaux électriques et enregistrés pour l'analyse.
Après de longues réflexions, la faisabilité d'une telle expérience, à 20 mètres d'une explosion atomique, était en question, et les deux confrères se tournèrent vers une autre source de neutrinos plus facile à apprivoiser. Les réacteurs nucléaires fonctionnent sur le principe de la fission d'un mélange judicieux de noyaux dits fissiles, principalement l'uranium 235 et le plutonium 239. Baignés par un flux de neutrons dans le cœur d'un réacteur, ces noyaux se scindent en deux morceaux (ils fissionnent) tout en libérant de l'énergie, et quelques neutrons qui entretiennent la réaction ( Figure 12). L'inconvénient de la fission est que presque tous les fragments émis et les autres produits de réaction sont radioactifs, et se désintègrent jusqu'à atteindre une configuration stable[5]. Or, chaque désintégration radioactive b engendre un neutrino électronique (ou un anti-neutrino).
Les réacteurs sont ainsi des sources copieuses, cependant mille fois moins intense qu'une explosion nucléaire de 20 kilotonnes (à l'époque). En 1956, après plusieurs années d'efforts, Reines et Cowan installèrent un détecteur de 4 200 litres de liquide scintillant, et d'eau contenant une faible quantité de cadmium pour favoriser la détection des neutrons ( Figure 2), près du réacteur nucléaire de Savannah River, en Caroline du sud. Après quelques mois de prise de données ils identifièrent les interactions des anti-neutrinos électroniques. Le signal était 5 fois plus faible quand le réacteur était à l'arrêt pour maintenance. Après tous les tests de rigueur, la découverte fut annoncée par télégramme à Pauli en juin 1956. Reines obtint le prix Nobel de physique en 1995 (Cowan étant malheureusement décédé en 1974). Notons qu'au cours de cette expérience, Reines et Cowan mesurèrent aussi la probabilité d'interaction des neutrinos, grandeur couramment appelée section efficace, en conformité avec la prédiction de la théorie de Fermi.

Figure 1
Principe de détection des anti-ne dans l'expérience de Reines et Cowan. Un anti-ne interagit sur un noyau d'hydrogène de l'eau. Il y a production instantanée d'un positron et d'un neutron. Le positron s'annihile avec un électron du milieu, et deux photons gammas sont émis ; ces derniers sont détectés par leurs interactions dans le scintillateur liquide. Le neutron commence par ralentir par collisions, puis il est capturé par un noyau de Cadmium ; cette capture est suivie par l'émission de photons gammas qui sont détectés dans le scintillateur liquide.
Trois neutrinos
Dès les années 50 on savait qu'un muon se désintègre en un électron et deux neutrinos : m+ à e+ + n + n. On en suspectait qu'un neutrino était associé à l'électron (celui de Reines et Cowan) et l'autre au muon. En 1963, Léon Lederman, Mel Schwartz, et Jack Steinberger, réalisèrent une expérience ingénieuse à Brookhaven (Etats-Unis) pour déterminer si ces deux neutrinos sont identiques ou distincts.

Figure 2
Principe de l'expérience de mise en évidence du neutrino muoniques.
Ils utilisèrent un accélérateur de protons de 30 GeV[6] comme source de neutrinos. Un faisceau de protons dirigé sur une cible de béryllium produit une myriade de pions[7] par l'intermédiaire de l'interaction forte. Les pions chargés se désintègrent en muons et en neutrinos par interaction faible. Les muons se désintègrent à leur tour comme expliqué ci-dessus. Derrière une zone de désintégration, les expérimentateurs ajoutent un écran de terre ou de métal d'une dizaine de mètres d'épaisseur pour éliminer les particules indésirables. Grâce à leur formidable pouvoir de pénétration seuls les neutrinos jaillissent en sortie. L'expérience était agencée de telle sorte que la majorité de neutrinos arrivant en zone de détection provenait de la désintégration des pions. Le détecteur (une chambre à étincelles), placé à quelques dizaines de mètres, était adapté pour discriminer un électron d'un muon. En effet, un muon se matérialise par une longue trace continue, alors qu'un électron, deux cent fois plus léger, dessine une trajectoire plus erratique. L'expérience mit en évidence beaucoup plus des traces de type muonique que de traces de type électronique. Le neutrino produit lors de la désintégration d'un pion (positif) ne peut se transformer qu'en muon, mais pas en électron : p+ à m+ + nm. Si le neutrino électronique était identique au neutrino muonique on aurait découvert presque autant de traces de chaque saveur. Il existe donc un neutrino spécifiquement associé au muon, noté nm. Lederman, Schwartz, et Steinberger furent gratifiés du prix Nobel de physique en 1988 pour cette découverte.
Ce résultat permit non seulement de mettre en évidence une deuxième saveur de neutrino, mais en plus de démontrer l'existence de deux familles bien distinctes de leptons. Dans le MSPP il est d'usage d'associer un nombre quantique spécifique à chaque famille, appelé nombre leptonique électronique, muonique, ou tauique. Nous verrons par la suite que ce nombre leptonique, introduit de façon ad hoc dans le MSPP, n'est en fait pas toujours conservé.
Trois familles seulement existent dans le modèle standard, sans que l'on sache pourquoi. Le tableau serait donc incomplet si je ne mentionnais pas le neutrino tauique, noté nt, qui fut observé directement seulement en l'an 2000.

Les neutrinos dans le modèle standard
Au sein du MSPP, on regroupe les leptons selon les couples (e, ne), (m, nm), et (t, nt), qui définissent le secteur des leptons. Dans cet exposé, je passerai volontairement sous silence les subtilités relatives au spin et à la projection du spin du neutrino le long de sa trajectoire (même si celles-ci jouent un rôle capital dans l'interaction faible). Les interactions entre particules sont maintenant bien comprises, et dans le MSPP deux fermions interagissent en échangeant un boson[8]. L'interaction faible se modélise par les échanges d'un trio de bosons W+, W-, Z0. Contrairement au photon de masse nulle, ces trois bosons sont entre 80 et 100 fois plus lourds que le proton ! C'est ce qui explique la très faible portée de l'interaction faible.

Prenons maintenant l'exemple concret de la désintégration bêta ( Figure 3). La réaction n à p + e- + anti-ne est en fait la transformation d'un quark de type « down » ( d) du neutron en un quark de type « up » ( u) et un boson W-, qui se désintègre à son tour en une paire (e-, anti-ne). Le neutron composé de trois quarks ( u,d,d) devient le trio de quarks ( u,u,d), qui n'est autre qu'un proton. Les interactions qui font intervenir les W sont appelées « courant chargés », car ils transforment le neutrino en son lepton associé (ou inversement) en modifiant la charge électrique d'une unité. Les interactions impliquant le boson Z0 sont désignées « courants neutres » car elles laissent inchangés les deux fermions qui interagissent. Ces dernières sont plus subtiles et elles ont seulement été découvertes en 1973, au CERN, en utilisant un faisceau de neutrinos muoniques et une chambre à bulles en guise de détecteur. Enfin, en 1989, l'étude de la durée de vie du Z0 au collisionneur électron-positron du CERN (le LEP) a montré qu'il n'y a que trois saveurs de neutrinos légers se couplant avec la matière.

Figure 3
Désintégration b (de type -) du Brome 80 en Krypton 80, dans le cadre de la théorie de Fermi (à gauche), et la même réaction dans le cadre du MSPP (à droite). Dans les deux cas la réaction fondamentale est la conversion d'un quark (d) en un quark (u) avec émission d'un électron et d'un anti-ne.

Les sources de neutrinos
Fort heureusement pour les physiciens des particules, les sources de neutrinos sont diverses et variées. On distingue les sources naturelles et les sources artificielles. Il est tout aussi important d'identifier la saveur des neutrinos qui naissent de ces fontaines de particules, et de comprendre les mécanismes de production. J'ai déjà évoqué les explosions de bombes à fission et les réacteurs nucléaires qui émettent des anti-ne. Les accélérateurs de particules actuels permettent essentiellement de produire des nm ou anti-nm. Le corps humain contient 20 milligrammes de l'isotope 40 du potassium (émetteur b) : chaque jour, 400 millions de neutrinos s'échappent de nos os à une vitesse proche de celle de la lumière ! L'atmosphère est le siège de réactions produisant nm et ne et leurs antiparticules. Le soleil émet uniquement des ne. Certaines explosions d'étoiles (supernovae de type II) produisent une quantité astronomique de neutrinos des trois saveurs et de leurs antiparticules. Les noyaux actifs de galaxie où siègent de gigantesques trous noirs en font probablement de même. Enfin, un rayonnement fossile de neutrinos et d'anti-neutrinos des trois saveurs baigne l'univers depuis les premières secondes qui suivirent le Big-Bang.
Voyons maintenant comment certaines de ces sources sont exploitées pour percer les mystères de ces surprenants neutrinos.

Les neutrinos solaires : la fin d'une énigme
Le Soleil, plus massif et plus brillant que la majorité des étoiles, est au milieu de son cycle de vie. Il puise son énergie de la réaction de fusion de deux protons conduisant à la conversion de l'hydrogène en hélium en son cœur, en émettant deux ne: 4p + 2e- à 4He + 2ne + 27 MeV. Il est ainsi le siège d'un cycle compliqué de réactions, dont certaines produisent des ne ( Figure 4). Les principaux sont les neutrinos dits primordiaux de faible énergie, encore dénommés neutrinos « pp » (ne(pp), E

 

   VIDEO     canal U       LIEN  

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon