ecole de musique piano
     
menu
 
 
 
 
 
 

L’essentiel sur… le cycle du carbone

 


 

 

 

 

 

L’essentiel sur… le cycle du carbone

Publié le 4 mars 2015
       
Le carbone est présent dans tous les grands « réservoirs naturels » de notre planète : atmosphère, océan, végétation, etc. Les échanges entre ces réservoirs se font selon un cycle – dit « cycle du carbone » – qui constitue un élément essentiel du changement climatique en cours.
On distingue quatre grands réservoirs naturels de carbone sur Terre : l’atmosphère, la lithosphère (sols et sous-sols), l’hydrosphère (mers, océans, lacs et rivières) et la biosphère (végétaux, animaux et autres organismes vivants). Si la quantité globale de carbone reste stable sur notre planète, sa répartition entre ces quatre sphères varie continuellement au fil d’échanges et de réactions biologiques, chimiques ou géologiques. Ces échanges se font selon un cycle d’émission et de stockage du carbone dont les variations ont un effet déterminant sur l’évolution globale du climat.


UN CYCLE
À DIFFÉRENTES ÉCHELLES DE TEMPS
Le cycle du carbone est décrit par un ensemble d’interactions entre le monde du vivant, l’air, les sols, le sous-sol, et les océans. Les réservoirs de carbone à considérer ne sont pas les mêmes selon les échelles de temps auxquelles on s’intéresse :
*         A l’échelle des temps géologiques (> 1 million d’années) : l'érosion chimique humide des roches pompe du dioxyde de carbone (CO2) de l’atmosphère. Ce carbone est ensuite amené à l’océan sous forme dissoute par les rivières et les fleuves. Il peut sédimenter au fond des océans et être enfoui dans la lithosphère. Sur ces échelles de temps, le cycle du carbone est bouclé par des émissions de CO2 dues aux éruptions volcaniques et aux émissions des surfaces océaniques. Ce cycle « lent » du carbone a vu la formation progressive des réserves d’hydrocarbures après enfouissement de quantités colossales de matières organiques durant plus de 300 millions d’années. Ce sont ces réserves de combustibles fossiles que nous brûlons activement depuis 200 ans et qui émettent du CO2 dans l’atmosphère. Ce CO2 additionnel est le principal facteur de réchauffement du climat depuis 60 ans (effet de serre).
*         À l’échelle du dernier million d’années : les concentrations de CO2 et de méthane (CH4) dans l’atmosphère ont varié de façon naturelle : les teneurs sont plus basses pendant les périodes glaciaires que pendant les périodes interglaciaires. Ces variations s’expliquent principalement par les modifications de la répartition de la végétation et des zones humides à la surface de la Terre, et par la modification de la capacité d’absorption de carbone par l’océan.
*         A l’échelle séculaire ou saisonnière : le cycle « lent » du carbone ne représente plus l’essentiel des échanges et un cycle « rapide » prend le relai entre les océans, l’atmosphère, la biosphère et les sols. Ce cycle rapide implique les plantes qui absorbent du CO2 lors de leur croissance (photosynthèse) et qui, comme les animaux, respirent et rejettent également du CO2. Lorsqu’elle meurt, la végétation relâche une partie de ce carbone vers l’atmosphère, sous forme de CO2 ou de méthane, mais une autre partie est stockée dans le sol.
*        
Actuellement, la végétation et les sols se comportent en puits de carbone et stockent une partie du carbone atmosphérique (sous forme de matière organique, comme le bois ou la tige des feuilles). Une autre partie du carbone atmosphérique est stockée sous forme de CO2 dissous dans les océans, ce qui par ailleurs cause leur acidification. Une fraction de ce carbone dissous est utilisée par les micro-organismes marins pour fabriquer leurs coquilles carbonatées. Ces coquilles s’accumulent dans les sédiments océaniques à la mort des organismes. A l’inverse, les océans peuvent ré-émettre du CO2 vers l’atmosphère (dégazage), notamment dans les eaux les plus chaudes. À l’échelle saisonnière, des variations de la concentration en CO2, en particulier dans l’hémisphère nord, ont été mises en évidence, avec des concentrations plus faibles en été qu’en hiver. Ce phénomène naturel est en lien avec l’intensification de la photosynthèse durant les périodes de printemps et d’été aux latitudes moyennes et hautes, et sa diminution pendant l’hiver. Dans le même temps, la respiration des végétaux et la décomposition de la matière organique du sol émet du CO2 dans l’atmosphère toute l’année, mais avec des flux plus élevées pendant l’été et l’automne.

ENJEUX :
ÉTUDIER LES FLUX ANTHROPIQUES / MAINTENIR L’ÉQUILIBRE DU CYCLE
Depuis les années 1850 et la révolution industrielle, la quantité de carbone dans l'atmosphère augmente (CO2 et CH4) à cause des activités humaines : consommation d’énergies fossiles (charbon, gaz, pétrole) et développement de l’agriculture (déforestation, changement de l’usage des sols…). Ces émissions sont devenues tellement importantes ces dernières décennies qu’elles modifient le rythme naturel du cycle du carbone. L’ampleur des conséquences des activités humaines a alerté la communauté internationale. Elle s’appuie aujourd’hui sur les travaux des chercheurs pour étudier précisément l’impact de l’Homme sur le cycle du carbone et les rétroactions possibles sur le climat.
Le cycle du carbone est donc complexe. Au total, les puits biosphériques et océaniques absorbent en moyenne l’équivalent de 55 % des émissions anthropiques, avec des variations selon les années. Le reste, soit l’équivalent de 45 % des émissions anthropiques, s’accumule donc dans l’atmosphère. Cela représente actuellement une augmentation annuelle de 0.6 % par an de la teneur atmosphérique en CO2.
Bilan atmosphérique : depuis le début de l'ère industrielle la concentration moyenne de CO2 a augmenté de 42 % ; les interactions de l’Homme avec l’environnement rajoutent chaque année 20 milliards de tonnes de CO2 dans l’atmosphère.


R&D :
ÉTUDIER LES ÉVOLUTIONS
DU CYCLE ET SES CONSÉQUENCES
Afin de mieux connaître le cycle du carbone, sa dynamique, et simuler le climat du futur, les chercheurs développent différents outils et méthodes pour comprendre les mécanismes du système climatique et en particulier ceux du cycle du carbone.
*         La paléoclimatologie est l’étude des climats anciens. Grâce aux prélèvements de glaces notamment aux pôles, de sédiments marins ou lacustres, ou d’autres archives climatiques naturelles (telles que les « spéléothermes » ou stalactites) en différents endroits de la Terre, les climatologues reconstituent les variations passées du climat. Ils analysent son fonctionnement et son évolution au cours du temps, aussi bien pendant les cycles lents et rapides évoqués ci-dessus. Des techniques précises de datations sont développées pour dater les phénomènes.
*         Les réseaux d’observation du CO2 puis du CH4, mis en place depuis plus de 50 ans permettent maintenant un suivi précis et continu des différentes composantes du cycle du carbone : mesure de la pression partielle de CO2 dans les océans, suivi des gaz à effet de serre dans l’atmosphère, mesure des échanges de carbone à l’échelle des écosystèmes (forêt, arbre, sols par exemple). Ces recherches sont menées dans le cadre de programmes nationaux ou internationaux (comme par exemple l’infrastructure de recherche européenne Icos, pour Integrated Carbon Observation System).
*         Des modèles numériques complètent les observations des évolutions actuelles et passées du climat et permettent de mieux comprendre le fonctionnement du système climatique, ou de certaines de ses composantes comme le cycle du carbone. Les données permettent de valider les modèles. Les supercalculateurs génèrent alors des simulations d’évolution du climat, passé, présent et futur à partir de scénarii de départ qui peuvent être modulés par les chercheurs (en modifiant par exemple les quantités de carbone rejetées dans l’atmosphère dans l’avenir par les activités humaines).

 

  DOCUMENT     cea         LIEN
 

 
 
 
 

OZONE

 

 

 

 

 

 

 

ozone  ( O 3)
(grec odzein, exhaler une odeur)

Consulter aussi dans le dictionnaire : ozone
Cet article fait partie du dossier consacré à l'air et du dossier consacré à l'environnement.
Gaz toxique de couleur bleutée, odorant, au pouvoir très oxydant, formé de trois atomes d'oxygène (O3).

Atmosphère terrestre.
L'ozone est naturellement présent dans la haute atmosphère, où il se forme par une réaction photochimique. Il est également produit par les étincelles électriques et les réactions chimiques libérant de l'oxygène à froid. Dans la basse atmosphère, c’est un polluant toxique pour les animaux et les plantes. Au niveau de la stratosphère, en revanche, il forme une couche protectrice de la vie sur Terre, qui absorbe les rayonnements ultraviolets du Soleil.


1. PROPRIÉTÉS PHYSIQUES ET CHIMIQUES
L'ozone est un gaz de couleur bleue, d'odeur forte et pénétrante, dangereux à respirer et plus oxydant que l'oxygène. De densité 1,66, il se liquéfie à − 112 °C en donnant un liquide bleu indigo, extrêmement instable. Il oxyde à froid l'iode et presque tous les métaux, notamment le mercure et l'argent ; il déplace le chlore, le brome et l'iode de leurs combinaisons avec l'hydrogène ou les métaux ; il oxyde au maximum les acides du soufre, du phosphore et de l'arsenic ; il détruit aussi par oxydation les matières organiques (liège, caoutchouc). En revanche, avec divers composés organiques non saturés, il donne des composés d'addition peu stables, les ozonides.

2. UTILISATIONS
L'ozone est utilisé, pour son pouvoir oxydant et bactéricide, pour la désinfection de l'air dans les atmosphères confinées, la stérilisation des eaux, le blanchiment de textiles, le vieillissement du vin et du bois. Dans le traitement des plaies (ozonothérapie), il est appliqué en jet ou en solution aqueuse, en une ou en plusieurs fois selon le résultat obtenu. Il sert à la préparation d'huiles siccatives et à la synthèse de certaines essences végétales.

3. L'OZONE ATMOSPHÉRIQUE

3.1. L’OZONE STRATOSPHÉRIQUE ET LES BIENFAITS DE LA COUCHE D’OZONE
L'ozone joue un rôle fondamental dans les équilibres de l'environnement terrestre. 90 % de l'ozone atmosphérique se situent à des altitudes comprises entre 20 et 50 km. Cette « couche d'ozone » explique l'existence, à ces mêmes altitudes, d'une région de grande stabilité vis-à-vis des échanges verticaux, la stratosphère. Bien qu'il soit un constituant minoritaire de l'atmosphère (sa concentration relative maximale observée à 25 km d'altitude ne dépasse pas 5 à 6 millionièmes en volume), l'ozone est l'unique absorbant du rayonnement solaire ultraviolet de longueurs d'onde comprises entre 240 et 300 nanomètres. Cette absorption permet le maintien de la vie animale et végétale sur la Terre, en éliminant les radiations de courtes longueurs d'onde susceptibles de détruire les cellules de la matière vivante et d'inhiber la photosynthèse. C'est la raison pour laquelle on se préoccupe fortement depuis les années 1980 des atteintes portées à la couche d'ozone stratosphérique par les activités humaines.

3.2. L’OZONE TROPOSPHÉRIQUE ET SES MÉFAITS SUR LES ÊTRES VIVANTS
Aux altitudes inférieures à 10 km, les teneurs en ozone sont très faibles, de l'ordre de 0,03 millionième. Mais, contrairement à son rôle bénéfique dans la stratosphère, l'ozone agit près du sol comme un oxydant qui perturbe la photosynthèse et peut provoquer des lésions aux végétaux (taches brunes sur les feuilles correspondant à des nécroses). Dans les zones de forte pollution, où les teneurs peuvent être beaucoup plus élevées, l'ozone affecte directement la santé humaine, au niveau notamment du système respiratoire et des muqueuses. L'ozone est irritant pour les poumons, entraînant une toux, une gêne respiratoire, parfois même un œdème pulmonaire. Le traitement après une inhalation importante consiste en un repos strict, surveillé médicalement.
La quantité d'ozone contenue dans l'atmosphère s'exprime par l'« épaisseur réduite », c'est-à-dire l'épaisseur verticale d'une colonne où tout le gaz serait rassemblé, épaisseur ramenée à la température et à la pression normales. En moyenne, cette épaisseur est de 2,5 mm.

4. LE TROU DE LA COUCHE D'OZONE

4.1. LA DÉCOUVERTE DU TROU DE LA COUCHE D’OZONE

Couche d'ozone, trou
En 1985, des scientifiques britanniques signalent pour la première fois l'existence d'un « trou » de la couche d'ozone, ou plus exactement d'une réduction importante de l'épaisseur de la couche d'ozone au-dessus du pôle Sud. La haute atmosphère de cette région se révèle être en effet le théâtre d'un cycle effréné de destruction de l'ozone. Pendant l'hiver polaire, la formation d'un tourbillon d'air stratosphérique isole l'atmosphère antarctique du reste de l'hémisphère Sud. La température de la stratosphère peut alors descendre jusqu'à − 85 °C, conduisant à la formation de nuages de glace. Ces nuages polaires fixent le chlore présent dans la stratosphère sous forme d'acide chlorhydrique (HCl) et de nitrate de chlore (ClONO2). Au printemps austral, lorsque le Soleil réapparaît, en septembre et en octobre, son rayonnement provoque la dissociation du chlore par réaction photochimique. Une véritable réaction en chaîne s'enclenche alors : chaque atome de chlore libéré peut détruire jusqu'à 100 000 molécules d'ozone. Ce processus se poursuit jusqu'en novembre et réduit l'épaisseur de la couche de près de la moitié. Le Soleil a alors suffisamment réchauffé l'atmosphère pour dissiper les nuages stratosphériques. Le tourbillon polaire qui confinait le trou d'ozone disparaît, et l'air riche en ozone des latitudes moyennes s'infiltre de nouveau dans la stratosphère antarctique. Au pôle Nord, on n'assiste pas véritablement à la formation d'un tel « trou » dans la couche, mais plutôt à des déficits d'ozone localisés qui se manifestent depuis 1991. Ceci s'explique par la circulation de l'air, très différente de celle de l'Antarctique, et par des températures hivernales plus douces.

4.2. ORIGINE ET CONSÉQUENCES

Trou dans la couche d'ozone
Si certains facteurs naturels, comme l'émission de gaz soufrés lors d'éruptions volcaniques, ont toujours favorisé une destruction partielle et passagère de l'ozone, les scientifiques ont dénoncé dès 1980 le danger représenté par l'émission industrielle de chlore. Les chlorofluorocarbures (CFC), utilisés comme gaz propulseurs d'aérosols, agents de réfrigération ou agents gonflants de certaines mousses rigides, constituent la cause principale de destruction de la couche d'ozone. De nombreux autres produits chimiques, notamment les halons (dérivés halogénés d'hydrocarbures), utilisés dans les extincteurs d'incendie, ainsi que certains solvants comme le tétrachlorure de carbone ou le bromure de méthyle, participent aussi à la formation du trou d'ozone. Tous ces composés, extrêmement stables, peuvent subsister entre 50 et 100 ans dans l'atmosphère. Ils diffusent ainsi jusqu'aux pôles et libèrent leurs atomes de chlore (ou de brome), qui détruisent l'ozone.
En dégradant la couche d'ozone, les activités humaines ont mis en danger notre protection solaire naturelle. La diminution de l'ozone stratosphérique entraîne l'augmentation du nombre des rayons UVB qui atteignent le sol. Ces rayons peuvent endommager l'ADN humain et provoquer notamment des cancers de la peau et des cataractes. Ils ont également un effet nocif sur les végétaux et le phytoplancton.

4.3. LA PRISE DE CONSCIENCE INTERNATIONALE
Depuis 1985 (convention de Vienne), plusieurs conférences internationales ont marqué la prise de conscience mondiale de la nécessité de protéger la couche d'ozone stratosphérique et de veiller à limiter les effets des activités humaines sur le climat. Les principaux pays producteurs de CFC ont abandonné la fabrication et l'utilisation de ces gaz destructeurs de l'ozone. Aujourd'hui, les hydrofluorocarbures (HFC) et les hydrocarbures perfluorés (PFC), substituts de deuxième génération des CFC, sont sans danger pour la couche d'ozone (il faudra cependant des années pour qu'elle se reconstitue) ; en revanche, ce sont de puissants gaz à effet de serre qui contribuent au réchauffement de la planète.


   DOCUMENT   larousse.fr    LIEN

 
 
 
 

CHIMIE POLLUANTE, CHIMIE NON-POLLUANTE ET CHIMIE DÉPOLLUANTE

 

 

 

 

 

 

 

CHIMIE POLLUANTE, CHIMIE NON-POLLUANTE ET CHIMIE DÉPOLLUANTE

L'image de la Chimie comme source de toutes les pollutions est partiellement vraie, et ceci depuis fort longtemps. Métallurgie du plomb dans l'Antiquité, usage de cosmétiques toxiques pendant la Renaissance, empoisonnement d'utilisateurs de pesticides puissants, rejets odorants ou toxiques... Les exemples abondent de cette chimie Noire, ou Brune, ou même Rouge. Après en avoir fait un catalogue incomplet, je montrerai que ces abus ont conduit à une chimie non-polluante, fondée dans l'idéal sur l'absence de rejets toxiques, mais surtout sur la maîtrise des rejets inévitables. Nous en sommes au développement de la Chimie Verte. Je montrerai ensuite que l'ensemble des activités humaines est polluant, et qu'il est souvent nécessaire d'avoir recours à la Chimie pour contrecarrer les effets de ces activités.

Texte de la 292e conférence de l’Université de tous les savoirs donnée le 18 octobre 2000. Chimie polluante, chimie non-polluante, chimie dépolluante par Guy Ourisson Au fond, j'aurais dû proposer un autre titre : « Chimie Noire, Chimie Rouge, Chimie Blanche, Chimie Verte, Chimie Rose ». Et c'est bien ainsi que je vais traiter mon sujet. Je suis à la fin d'une carrière de chimiste, que j'ai été heureux de pouvoir mener àbien. J'ai passé toute mon enfance dans une usine de produits chimiques, à Thann, dans le Sud de l'Alsace, où mes camarades et moi jouions dans les ateliers de fabrication, insouciants des odeurs de chlore, d'acide chlorhydrique ou d'anhydride sulfureux. Les énormes charpentes centenaires des chambres de plomb, édifiées avec le concours de Monsieur de Gay-Lussac, faisaient d’admirables cadres pour des parties de cache-cache. Quand j'ai été élu à la Présidence de l'Académie des Sciences, le magazine Marianne a publié un écho disant que cette élection avait donné des boutons à certains membres du Cabinet de Madame Voynet, parce que j'étais considéré comme « un croisé de la Chimie ». J'ai pris cet écho comme un compliment, bien que je me sente plus proche de bien des environnementalistes qu'ils ne le croient. Mais vous êtes prévenus : mon propos sera celui d'un « croisé de la Chimie ». La Chimie a été noire, et elle a été rouge. Elle a été noire, c'est à dire polluante. Les gravures d'il y a un siècle, représentant l'usine de Thann dont je vous parlais, insistent sur ce qui démontrait la prospérité de l'usine : les épaisses volutes de fumée sortant des cheminées. Ce n’est qu’un exemple, et il n'y avait bien sûr pas que les industriels de la chimie qui se flattaient de cracher de la fumée noire. Notez cependant que ces fumées ne sortent pas nécessairement des ateliers de fabrication, mais plutôt des centrales dans lesquelles était brûlé du charbon. Ces fumées noires étaient aussi celles qui régnaient dans nos villes où chaque foyer (notez le terme) se chauffait par une cheminée brûlant du charbon : de l'anthracite ou des boulets. Ceux d'entre vous qui n'ont pas eu tous les jours à recharger une chaudière à charbon, dans l'atmosphère suffocante due à la combustion du soufre résiduel, ceux qui n'ont pas connu Londres dans le brouillard jaune dû aux innombrables cheminées individuelles, ceux-là ne savent pas ce qu'est une pollution atmosphérique ! Il est vrai que, dans la villa que nous habitions à Thann, dans l'enceinte de l'usine, il était inutile de laver les voilages des fenêtres : ils partaient en charpie au lavage et il fallait les changer tous les ans. Il fallait aussi changer tous les ans ou tous les deux ans les arbustes d'ornement plantés en bordure de l'usine. C'était une usine noire. En ce temps, avant-guerre, il n’était pas possible de mesurer la pollution atmosphérique, sinon pour des concentrations plus élevées que ce que mesurait le nez : une forte odeur de SO2 voulait dire que le vent avait tourné à l'Ouest et qu’il y avait une fuite ;une forte odeur de chlore, qu'il avait tourné à l'Est et qu’il y avait une fuite – et un coup de téléphone au contremaître responsable réglait le problème. Cependant, le travail à l'usine et notre vie familiale dans l'usine n'étaient pas considérés comme mortifiants ou morbifiques. Je n'en déduis pas que c'était une situation idéale, loin de là. Je veux simplement dire que nous revenons de loin. Des photographies récentes de l'usine de Thann ou de toute autre usine chimique ne montrent jamais de fumées noires ; tout au plus des volutes blanches de vapeur d'eau. Peut-être influent-elles sur le climat local.Il y a même une certaine prétention à croire que nos petits moyens ont une puissance suffisante pour cela... « Noire », la chimie l'était aussi d'une façon plus insidieuse, invisible et inodore. Cette noirceur clandestine, je l'illustrerai à nouveau par l'exemple de l'usine de Thann. Cette usine a longtemps eu une exclusivité en France : elle produisait de la potasse et du chlore par électrolyse du chlorure de potassium extrait des mines de potasse d'Alsace, toutes proches. Cette électrolyse se faisait avec des cathodes de mercure, au moment même où, pour réussir l'examen de chimie minérale à la Sorbonne, il fallait pouvoir expliquer pour quelles bonnes raisons théoriques cette électrolyse, possible avec le chlorure de sodium, était impossible avec le chlorure de potassium. Thann produisait de la potasse et du chlore. Mais Thann consommait du mercure, alors qu'en principe ce métal toxique ne devait pas quitter l'atelier de production : il ne devait se retrouver ni dans le chlore ni dans la potasse. Il n’aurait pas fallu en perdre, vu son prix. Pourtant, il s'en perdait quelques kilos tous les ans. Ce n'est que dans les années suivant la guerre que les méthodes analytiques sont devenues suffisamment sensibles pour qu'il soit possible de retrouver des teneurs inacceptables de mercure dans les sédiments de la petite rivière passant à côté de l'usine, la Thur. Une fois les fuites de mercure localisées, il devint possible de les colmater, puis de nettoyer la rivière, et de mettre au point une production « propre », pour laquelle l'usine de Thann obtint l'un des premiers trophées nationaux pour son action efficace de protection de l'environnement. Ceci n'est qu'un exemple. La règle qu'appliquent toutes les usines chimiques « civilisées » est de chercher à limiter ce qui sort de l'usine aux produits destinés à la vente, à de l'eau propre, de l'azote ou de l'oxygène, des matériaux inertes utilisables éventuellement dans le bâtiment ou les travaux publics... Ne me faites pas dire que c'est toujours le cas, mais toute déviation à cette règle est reconnue comme une déficience à corriger. Ne me faites pas non plus dire que toute déviation constitue un danger : il est bien probable que les habitants de Vieux-Thann, en aval des rejets de mercure méconnus, contenaient dans leur corps moins de mercure venant de l'usine de Thann que ne leur en procuraient les amalgames bouchant leurs dents cariées. Mais la chimie n'est-elle pas rouge ? N'est-elle pas la source d'accidents ?Le voisinage de ses centres de production n'est-il pas dangereux ? Les noms de Seveso ou de Bhopal ne sont-ils pas ceux de catastrophes majeures ? Bhopal assurément. Des milliers de victimes. Un accident rendu possible parce que les mesures de sécurité normales dans une usine occidentale n'étaient pas respectées dans cette filiale indienne de la société-mère américaine. Il n'y a pas de petit profit. Comme en outre le bidonville de Bhopal cernait l'usine, l'incident est devenu une catastrophe. Et cette catastrophe a pris un tour insoutenable, quand les avocats spécialisés se sont abattus sur les victimes pour les convaincre d'engager des procès dont ils partageraient les bénéfices. La catastrophe est devenue un scandale. Et Seveso, dans le Nord de l'Italie, un pays sans bidonville ? Le Monde parlait encore tout récemment de la « catastrophe » de Seveso et de ses « milliers de victimes ». Il est nécessaire de rappeler les faits. Une explosion nocturne a conduit à la formation d'un nuage de vapeur d'eau, de soude, de phénol, de phénols chlorés, le tout évidemment très irritant, contenant des teneurs mesurables et importantes de chlorodioxines, dont la célèbre « dioxine ». Ce nuage a frappé directement les animaux dans les champs et les clapiers situés sur sa trajectoire et a provoqué la mort de ces animaux. La dioxine qu'il contenait a provoqué chez de nombreux habitants, par une réaction bien connue, une « chloracné », c'est à dire des boutons d'autant plus désagréables qu'ils sont parfois longtemps récidivants. Les habitants ont été déplacés, leurs maisons ont été détruites, les moutons et autres animaux de la région ont été abattus et incinérés, la couverture de terre a été enlevée et transportée vers des centres d'incinération spécialisés, un trafic s'est établi pour évacuer en douce, en dehors de tous les règlements, des détritus contaminés vers des sites non-autorisés. Bref, il s'en est suivi toute une série de conséquences graves et frisant le scandale. Et les milliers de victimes humaines ? En fait, il n'y en a aucune, ou plutôt qu'une seule : le directeur de l'usine, qui a été abattu quelques années plus tard, dans l'un des attentats des « années de plomb » italiennes. Des études épidémiologiques sérieuses ont fait le bilan de l'apparition de cancers dans la population exposée à l'accident de Seveso. Les résultats en ont été publiés ; ils ne montrent aucune différence significative entre les taux de cancers de cette population et ceux de populations éloignées de l'accident . Le taux de cancers du sein a même été plus faible, sur vingt ans, pour les plus exposés. Seveso a été un accident qui n'aurait pas dû avoir lieu ; ses suites ont constitué un traumatisme majeur pour des centaines de personnes, mais on ne peut pas dire que cela ait été une « catastrophe » ou alors il faudrait trouver un autre terme pour les catastrophes réelles qui se produisent chaque semaine sur la planète. Il y a évidemment une autre façon pour une industrie comme l’industrie chimique d'être rouge : c'est d'être dangereuse pour ses ouvriers. Nous disposons en France d'une source précieuse de renseignements grâce à la Caisse nationale de l'Assurance Maladie des Travailleurs Salariés, qui établit chaque année des statistiques par branche d'activité professionnelle. On y voit par exemple qu'en 1955, dans l'industrie chimique, il y avait eu 51 accidents avec arrêt de travail par million d'heures travaillées. En 1991, ce taux de fréquence des accidents avec arrêt était tombé de 51 à 16 et il est actuellement à 12, c'est à dire moins que dans l'industrie du vêtement et le plus bas de l'ensemble des branches d'activité. Et l'indice de gravité correspondant, l'indice qui mesure les incapacités temporaires ou définitives, est aussi au niveau le plus bas de toutes les branches industrielles. Pendant le même temps, dans le bâtiment et les travaux publics, le taux est passé de 94 à 60, c'est à dire cinq fois plus élevé. La prochaine fois que vous passerez à côté d'un chantier, comptez les têtes sans casques et les mains sans gants... La chimie n'est pas une industrie rouge pour ses producteurs, mais cela ne s'est réalisé que par un effort déterminé. À ce propos, je dois ajouter que l'enseignement de la chimie a enfin pris un tournant. Quand j'étais étudiant, j'ai appris par mes professeurs de belles histoires de beaux accidents. Mais personne ne m'avait appris comment éviter les accidents. J'espère ne pas me tromper en disant qu'il n'est plus possible maintenant pour un lycéen ou un étudiant d'entrer dans un laboratoire de travaux pratiques sans porter une blouse de coton et des lunettes de protection. Et il y a vraiment longtemps que je n'ai plus vu d'étudiant ou de chercheur fumer dans un laboratoire, alors que cela était fréquent il y a trente ans, avec les conséquences que l'on peut en attendre : quelques beaux incendies d'acétone ou d'éther. Je parlerai dans un moment des conséquences invisibles. Ni noire ni rouge, comment la chimie peut-elle être verte ? C'est là une notion nouvelle, mais une notion acceptée au point qu'il existe un journal spécialisé depuis deux ans dans la publication des travaux de chimie respectueuse de l'environnement. Il s'appelle bien sûr Green Chemistry. Le concept est simple : peut-on produire les matières chimiques qui nous sont utiles par des procédés doux, des procédés verts, sans réactif ou sous-produit toxique, en dépensant peu d'énergie et peu de matières premières non-renouvelables ? Peut-on remplacer des produits conduisant, après usage, à des pollutions, par des équivalents aussi efficaces, mais conduisant à des effluents bénins ? La réponse est dans presque tous les cas : « oui, on le peut, mais c'est plus cher », ou « c'est moins commode », ou « on ne peut pas en produire autant ». Ce dilemme n'est pas nouveau : par exemple il a déjà fallu remplacer il y a quelque dizaines d'années les premiers détergents par des produits un peu plus chers, mais biodégradables. Le concept de « chimie verte », conduisant à faire le bilan écologique complet d'une production, est nouveau. Il conduit à un renouveau d'intérêt pour les procédés catalytiques, dans lesquels en principe le catalyseur n'est pas du tout consommé et ne fait que faciliter une réaction. Il conduit à proscrire des réactifs toxiques comme le phosgène, mais à en trouver des équivalents pour pouvoir continuer à produire les mousses de polyuréthanes qui remplissent les coussins de nos voitures, à contrôler les réactions avec une très grande finesse pour éviter la formation de sous-produits potentiellement dangereux comme les dioxines, ou simplement inutiles, à utiliser des réactions sans solvants, toujours difficiles à récupérer, etc. Retenons simplement qu'il y a de plus en plus de chercheurs engagés dans cette voie, mais qu'il reste énormément à faire pour que la chimie soit vraiment verte. En fait, beaucoup de ces applications apparemment banales sont peut-être les plus difficiles à verdir. Je citerai seulement un exemple. Le nettoyage à sec de nos vêtements se fait avec des solvants. Jusque dans les années 1950 en tout cas, le solvant de choix pour cela était le benzène. On savait qu'il pouvait être toxique, et qu'il était inflammable, mais il était bon marché et efficace. Puis sont venus les solvants chlorés, ininflammables, bon marché, et bien volatils, ne laissant pas d'odeur. Mais leur récupération, si elle est facile à 99 %, est difficile à 100 %. La solution verte serait par exemple de tenter le nettoyage par le gaz carbonique supercritique : excellent solvant, ni toxique ni inflammable, mais exigeant de remplacer par des installations complexes, sous pression, tous les ateliers actuels. L'eau supercritique serait encore plus verte. Je doute que son utilisation soit compatible avec nos vêtements actuels... et seriez-vous prêts à payer peut-être dix fois plus cher le nettoyage de vos cravates ? Noire, rouge, verte. Reste la chimie rose. C'est avant tout celle qui nous soigne. Sans chimie, pas de médicaments vraiment efficaces. Je n'en parlerai pas davantage. Mais la chimie rose, c'est aussi celle qui dépollue. Par exemple, nous en bénéficions tous les jours, simplement en buvant un verre d'eau de ville. Aucune eau naturelle ne reste pure, potable, très longtemps. Elle sort de la source, et son destin est de devenir rapidement le foyer de larves de moustiques, de sangsues, d'escargots d'eau, de daphnies, et de bien des micro-organismes dont certains n'attendent que d'être bus pour devenir des parasites dangereux. Avant la guerre, il n'était pas question de boire l'eau du robinet sans l'avoir fait bouillir, tout au moins dans les régions bénies du Sud de la Loire. Actuellement, dans bien des pays, c'est encore le cas. Si notre eau est potable, nous le devons exclusivement à la chimie. À la chimie qui sait produire les membranes de filtration, au chlore que l'on sait additionner en quantités minimes et dosées, à l'ozone qui permet des traitements encore plus doux et verts. Quand nous l'avons bue et éliminée, c'est encore une chimie douce, une chimie rose, qui nous permet de la traiter puis de la rejeter sans trop de dégâts sur l'environnement. Floculants, additifs, contrôles chimiques multiples, heureusement combinés à des traitements microbiologiques, font des usines de traitement des eaux usées de véritables usines chimiques roses. Mon propos ne serait pas complet si je n'ajoutais pas quelques faits. Les journaux sèment la peur : peur des pollutions, peur des intoxications, peur des dangers qui nous guettent. Retenez, même si cela n'a plus rien à voir directement avec ma chimie arc-en-ciel, quelques faits : - Nous gagnons actuellement tous les ans un trimestre supplémentaire d'espérance de vie : un an tous les quatre ans, et parmi les petites filles nées cette année, on peut prévoir que la moitié deviendront centenaires. Ceci n'est guère compatible avec l'idée d'un monde de plus en plus dangereux. Dans nos pays, la vie est en fait de moins en moins dangereuse. En partie grâce à la chimie. - Dans une mauvaise année, celle où il y aurait un accident chimique vraiment très grave, il pourrait y avoir peut-être une dizaine de victimes. Or, il y a en France près de dix mille morts prématurées par an, par suite des accidents de la route. - Et le tabac, à lui seul, est responsable de 40 000 à 60 000 morts prématurées par an. Ces morts sont dues bien entendu aux produits chimiques contenus dans la fumée de tabac. Ce sont, de très loin, les morts les plus nombreuses que l'on puisse attribuer à la Chimie. Cette chimie-là est rouge, rouge-sang.


   VIDEO       CANAL  U         LIEN

 
 
 
 

MACHINES ET MOTEURS MOLÉCULAIRES : DE LA BIOLOGIE AU MOLÉCULES DE SYNTHÈSE

 

 

 

 

 

 

 

MACHINES ET MOTEURS MOLÉCULAIRES : DE LA BIOLOGIE AU MOLÉCULES DE SYNTHÈSE

De nombreux processus biologiques essentiels font intervenir des moteurs moléculaires (naturels). Ces moteurs sont constitués de protéines dont la mise en mouvement, le plus souvent déclenchée par l'hydrolyse d'ATP (le "fioul" biologique), correspond à une fonction précise et importante. Parmi les exemples les plus spectaculaires, nous pouvons citer l'ATPsynthase, véritable moteur rotatif responsable de la fabrication de l'ATP. Pour le chimiste de synthèse, l'élaboration de molécules totalement artificielles, dont le comportement rappelle celui des systèmes biologiques, est un défi formidable. L'élaboration de "machines" et "moteurs" moléculaires de synthèse représente un domaine particulièrement actif, qui a vu le jour il y a environ une douzaine d'années. Ces machines sont des objets nanométriques pour lesquels il est possible de mettre en mouvement une partie du composé ou de l'assemblée moléculaire considérée, par l'intervention d'un signal envoyé de l'extérieur, alors que d'autres parties sont immobiles. Si une source d'énergie alimente le système de manière continue, et qu'un mouvement périodique en résulte, l'assemblée moléculaire en mouvement pourra être considérée comme un "moteur". D'ores et déjà, certaines équipes de chimiste ont pu fabriquer des moteurs rotatifs minuscules, des moteurs linéaires mis en mouvement par un signal électronique ou des "muscles" moléculaires de synthèse, capables de se contracter ou de s'allonger sous l'action d'un stimulus externe. Quelques exemples représentatifs seront discutés lors de l'exposé. Un certain nombre de questions ayant trait aux applications potentielles du domaine de "nanomécanique moléculaire" seront abordées : - "ordinateurs moléculaires", pour lesquels certains chercheurs fondent de grands espoirs, stockage et traitement de l'information au niveau moléculaire, - robots microscopiques, capables de remplir une grande variété de fonctions allant de la médecine à la vie de tous les jours, - transport sélectif de molécules ou d'ions à travers des membranes.

Transcription de la 613e conférence de l'Université de tous les savoirs donnée le 20 juin 2006 revue par l'auteur.
Jean Pierre Sauvage : « Machine et moteurs moléculaires : de la biologie aux molécules de synthèse »

De nombreux processus biologiques essentiels font intervenir des moteurs moléculaires naturels. Ces moteurs sont constitués de protéines dont la mise en mouvement, le plus souvent déclenchée par l'hydrolyse d'ATP (le « fuel » biologique), correspond à une fonction précise et importante. Parmi les exemples les plus spectaculaires, nous pouvons citer l'ATPsynthase, véritable moteur rotatif responsable de la fabrication de l'ATP. Pour le chimiste de synthèse, l'élaboration de molécules totalement artificielles, dont le comportement rappelle celui des systèmes biologiques, est un défi formidable.
L'élaboration de « machines » et « moteurs » moléculaires de synthèse représente un domaine particulièrement actif, qui a vu le jour il y a environ une douzaine d'années. Ces machines sont des objets nanométriques pour lesquels il est possible de mettre en mouvement une partie du composé ou de l'assemblée moléculaire considérée, par l'intervention d'un signal envoyé de l'extérieur, alors que d'autres parties sont immobiles. Si une source d'énergie alimente le système de manière continue, et qu'un mouvement périodique en résulte, l'assemblée moléculaire en mouvement pourra être considérée comme un « moteur ». D'ores et déjà, certaines équipes de chimistes ont pu fabriquer des moteurs rotatifs minuscules, des moteurs linéaires mis en mouvement par un signal électronique ou des « muscles » moléculaires de synthèse, capables de se contracter ou de s'allonger sous l'action d'un stimulus externe.
Quelques exemples représentatifs seront discutés et un certain nombre de questions ayant trait aux applications potentielles du domaine de « nanomécanique moléculaire » seront abordées.
Qu'entend-on par machine et moteur moléculaires ? Et quels sont les systèmes naturels étudiés ?
Une machine moléculaire est un système dynamique comportant plusieurs constituants et capable de subir des mouvements réversibles de grande amplitude. Ces mouvements sont contrôlés par un signal extérieur (le signal peut être photonique, électronique ou chimique).

Il existe 3 catégories de machines moléculaires :
-les protéines moteurs (en biologie): ce sont des moteurs rotatifs, comme l'ATPsynthase ou les flagelles des bactéries qui permettent leur locomotion, des moteurs linéaires (les muscles, la kinésine ou la dynéine), ou encore des presses, comme la famille des chaperons (les chaperons sont capables d'encapsuler et de comprimer des protéines dénaturées pour leur redonner la bonne conformation).
-les systèmes hybrides : ce sont des systèmes développés par des biologistes, souvent en association avec des chimistes et des ingénieurs, comportant des fragments naturels et éventuellement des éléments artificiels issus de la chimie de synthèse.
-les molécules ou assemblées moléculaires totalement artificielles : c'est ce à quoi nous nous intéresserons plus particulièrement.
Détaillons un exemple de moteur moléculaire (de la catégorie des protéines moteurs), l'ATPsynthase schématisée figure 1. L'ATPsynthase est une enzyme universelle (nous pouvons la trouver chez les bactéries les plus primitives ainsi que chez les mammifères : elle est présente dans tous les organismes vivants). Elle est responsable de la fabrication de l'ATP (Adénosine TriPhosphate) à partir d'ADP (Adénosine DiPhosphate) et de phosphate inorganique. L'ATP représente un véritable « fuel » biologique qui permet le stockage énergétique dans la cellule (nous fabriquons chaque jour la moitié de notre poids en ATP !).

Figure 1 : l'ATPsynthase est un moteur rotatif merveilleux
Figure 2 : la rotation du rotor g à l'intérieur de la roue
a3b3 a été mise en évidence en attachant un
filament d'actine à une extrémité et en alimentant
le système en ATP
Lorsqu'une solution d'ATP est ajoutée, le groupe japonais a pu remarquer que le filament d'actine (qui a été modifié de telle façon à être rendu luminescent) tourne dans le sens inverse des aiguilles d'une montre : l'ATPsynthase a agi comme un moteur rotatif réalisant l'hydrolyse de l'ATP en ADP et en phosphate inorganique, c'est à dire la réaction inverse de celle produisant l'ATP.
Ce groupe a donc mis en évidence que nous avons un « fuel », l'ATP, dont la conversion
engendre un mouvement de rotation pour un moteur moléculaire très complexe issu de la
biologie, mais qui peut être classé comme un moteur hybride.
Il existe d'autres protéines moteurs qui sont des moteurs linéaires :
-la kinésine et la dynéine : elles sont responsables du transport de la matière dans les cellules, dans des organelles (sortes de « sacs » présents sur la kinésine). La kinésine bouge très vite (300-400 km/h si l'on ramène l'échelle à celle d'une personne courant sur une piste de stade).
-les muscles striés : ils se contractent ou s'allongent grâce à des filaments (actine : filament fin / myosine : filament épais) qui coulissent les uns le long des autres.
Les molécules de synthèse
De manière générale, l'élaboration de molécules artificielles a beaucoup évolué. Il reste cependant des défis inaccessibles aujourd'hui.
Certaines substances naturelles très complexes peuvent être synthétisées au laboratoire, comme la brévétoxine A (figure 3). Cette molécule présente un grand nombre de carbones asymétriques (22). Elle a été préparée par un groupe américain et a nécessité le travail de 20 personnes sur une période d'environ 12 ans. Cette synthèse représente un véritable tour de force, salué par la communauté des chimistes des molécules.

Figure 3 : le groupe américain de K.C. Nicolaou a réalisé la synthèse totale
de la brévétoxine A
Mais pour le moment, aucune équipe n'est parvenue à synthétiser la maitotoxine (figure 4), substance naturelle comprenant environ une centaine de carbones asymétriques.
Figure 4 : la maitotoxine, un des poisons marins les plus violents, n'a pas encore pu être synthétisée au laboratoire
Les moteurs et machines moléculaires artificiels : caténanes et rotaxanes
Les caténanes et les rotaxanes (figure 5) sont devenus très populaires dans le domaine de la recherche contemporaine (véritable révolution au cours des 20 dernières années) et sont beaucoup étudiés par les chimistes, les physiciens et les ingénieurs pour leur potentiel dans la fabrication de machines moléculaires.
Figure 5 : schéma d'un [2]caténane et d'un [2]rotaxane
Jusqu'au début des années 1980, ces composés semblaient inaccessibles car il n'existait pas de méthode de synthèse, puis une méthode a été découverte (figure 6) : elle met en Suvre l'effet de matrice d'un métal de transition, le cuivre (I), afin d'entremêler 2 fils moléculaires par exemple pour obtenir un précurseur qui permettra ensuite de fabriquer un [2]caténane.
Figure 6 : stratégie pour entremêler 2 fragments moléculaires afin de préparer un [2]caténane
Sur la figure 6, nous avons 2 fragments moléculaires f-f capables d'interagir avec un centre métallique (cation métallique susceptible de rassembler et d'orienter ces 2 fragments). Nous obtenons alors un intermédiaire, comportant deux fils f-f entremêlés, conduisant au [2]caténane par une réaction chimique classique de formation d'anneau.
Traitons un exemple concret pour illustrer cette stratégie : la formation d'un entrelacs de 2 fils moléculaires dppOH (dihydroxyphénylphénanthroline) grâce au cation métallique Cu (I) (figure 7), entrelacs réalisé par Dietrich-Buchecker et al., en 1984.

Figure 7 : réalisation d'un entrelacs de 2 fragments organiques grâce à
l'effet de matrice du cuivre (I)
Le cuivre existe sous 2 états :
-un état oxydé : c'est le cuivre (II) ou Cu2+
-un état réduit : c'est le cuivre (I) ou Cu+.
C'est le cuivre dans son état réduit qui a été utilisé ici et qui est toujours utilisé pour réaliser un entrelacs de ce type.
Une fois l'entrelacs effectué, une réaction de chimie classique est mise en Suvre afin de synthétiser le [2]caténane (figure 8).

Figure 8 : formation du [2]caténane par une réaction chimique classique
Figure 9 : structure cristallographique du
[2]caténane complexé au cuivre
Les deux anneaux étant entrelacés, la seule manière de les séparer est de couper un lien chimique. Il est possible de retirer le cuivre (I) en réalisant ce qu'on appelle la démétallation (figure 10).
Figure 10 : il est facile de retirer le centre métallique en utilisant du cyanure de potassium
Figure 11 : la molécule se réarrange
pendant la démétallation
La première machine moléculaire à partir d'un caténane :
La première machine moléculaire réalisée à partir d'un [2]caténane est un moteur rotatif dont le mouvement est déclenché par l'oxydation et la réduction du cuivre (figure 12). Il faut cependant noter que ce n'est pas un véritable moteur rotatif, dans la mesure où la direction des deux demi-tours représentés sur la figure 12 n'est pas contrôlée.

Figure 12 : rotation d'un anneau à l'intérieur d'un autre anneau, sans contrôle de la
direction : utilisation du couple Cu(II) / Cu(I)
Le cuivre (I) est stable lorsqu'il est entouré de 4 atomes donneurs (atomes d'azote) : il présente une géométrie pseudo-tétraédrique lors de la coordination à deux phénanthrolines (chacune a 2 atomes d'azote).
Le cuivre (II) n'est lui par contre pas stable en pseudo-tétraèdre, il préfère être entouré de 5
atomes donneurs : une phénanthroline et une terpyridine (respectivement 2 et 3 atomes
d'azote).
Lorsque le cuivre (I) est oxydé (-e-) en cuivre (II), nous passons d'une situation stable (en haut à gauche) à une situation instable (en haut à droite). Le système instable va évoluer (se relaxer) et la relaxation implique qu'un des deux anneaux tourne à l'intérieur de l'autre anneau. Ceci s'effectue de manière à venir placer le fragment à 3 azotes (terpyridine) en position d'interaction avec le cuivre : le système retrouve alors une situation stable (en bas à droite). Ce réarrangement a été réalisé en effectuant une rotation d'un demi-tour.
Le système est réversible, ce qui signifie qu'il est possible de réduire (+e-) le cuivre (II) en cuivre (I) pour revenir à la situation de départ (en haut à gauche), en passant par un système instable (en bas à gauche).
Ce moteur rotatif est donc fondé sur un mouvement contrôlé par électrochimie et le système est parfaitement réversible : il est possible de faire autant de cycles CuI à CuII à CuI que l'on veut.
Une navette moléculaire à partir d'un rotaxane :
Nous avons vu qu'un rotaxane pouvait être un moteur rotatif ou un moteur linéaire. Le groupe de Fraser Stoddart, aux Etats-Unis, a préparé une navette moléculaire (figure 13) à partir d'un rotaxane, c'est un moteur linéaire.

Figure 13 : schématisation d'une navette moléculaire
C'est un processus électronique qui permet de faire coulisser l'anneau d'une station vers l'autre (figure 14).
Figure 14 : une « navette » moléculaire :la mise en mouvement se fait en
oxydant la station verte puis en réduisant sa forme oxydée
Ce processus est réversible puisqu'il est possible de revenir à la situation de départ en réduisant la station verte, c'est à dire en revenant à sa forme neutre du point de vue des charges.
Cette navette moléculaire et des molécules dérivées de sa structure originelle ont conduit à des applications qui peuvent être importantes : des chimistes se sont associés à des ingénieurs et à des physiciens pour tenter de fabriquer des systèmes de stockage d'information (mémoires) et des ordinateurs primitifs à base moléculaire.
Peut-on mettre en Suvre un système de stockage de l'information moléculaire en utilisant une navette moléculaire ?

Figure 15 : découverte de l'année 2001, publiée dans le magazine Science, vol. 294, 21
décembre 2001, p. 2442 : nous dirigeons-nous vers des ordinateurs moléculaires ?
Le système qui a été élu « découverte de l'année 2001 » par le magazine Science (figure 15) pourrait donner naissance à un ordinateur moléculaire, permettant le stockage de l'information.
Ce dispositif est composé de barreaux de semi-conducteur ou d'un métal conducteur : 3 barreaux en haut et 3 barreaux en bas, positionnés de manière orthogonale. Entre ces barreaux ont été intercalées des molécules de la navette moléculaire. Lorsqu'un potentiel est appliqué entre deux barreaux perpendiculaires, la position de l'anneau (représenté en blanc sur la figure) peut être contrôlée. Dans le même temps, les propriétés de conduction de l'électricité du filament organique sont modifiées. Ainsi, selon la position de l'anneau sur le filament organique, nous avons un conducteur (qui peut être considéré comme le 1 d'un système informatique) ou un isolant (qui est alors le 0). L'état du fil organique reliant les barreaux peut être « lu ». Il est également possible d' « effacer » afin de revenir à l'état initial.
Nous avons donc un système permettant le stockage de l'information, à base moléculaire. Il faut cependant noter que ce petit dispositif fait encore l'objet de nombreuses discussions et débats.
Vers des muscles moléculaires de synthèse à l'échelle nanométrique :
Il est possible de mimer les moteurs linéaires que sont les muscles. Cela a été réalisé par Maria Consuelo Jiménez et Christiane Dietrich-Buchecker qui ont cherché à imiter le fonctionnement du muscle strié en préparant un dimère de rotaxane (figure 16). Dans ce dimère de rotaxane, les filaments vont pouvoir coulisser l'un sur l'autre pour conduire à une forme contractée ou à une forme étirée.
Figure 16 : un dimère de rotaxane est la topologie idéale pour réaliser l'interconversion d'une structure étirée et d'un système contracté. L'axe d'une sous-unité (bleue, par exemple) traverse l'anneau de l'autre sous-unité (noire)
La synthèse du muscle est un réel défi, proche du point de vue de la difficulté, de celui que peut représenter la synthèse de produits naturels complexes. C'est la coordination au métal qui détermine le fait qu'il soit étiré ou contracté. L'étape clé de la préparation du muscle est la réaction de double « enfilage » (figure 17). La structure doublement entrelacée de ce composé a été mise en évidence par diffraction des rayons X (figure 18).
Figure 17 : formation du dimère de rotaxane par double enfilage au cuivre (I)

Figure 18 : structure cristallographique du
composé doublement entrelacé
La mise en mouvement du muscle est réalisée par une réaction d'échange cuivre (I) / zinc (II) (figure 19).
Comme nous l'avons vu précédemment, le cuivre (I) est stable lorsqu'il est tétracoordiné : sa sphère de coordination est composée de 2 phénanthrolines, c'est la forme étirée (85 Angström). Le mouvement est induit par échange du cuivre (I) par du zinc (II) qui, lui, est stable lorsqu'il est pentacoordiné (géométrie de bipyramide trigonale) : sa sphère de coordination comprend une phénanthroline et une terpyridine, c'est la forme contractée (65 Angström).
L'amplitude est à peu près la même que celle que nous trouvons dans les muscles striés (myosine / actine) : la contraction est d'environ 25 % de la longueur totale de l'objet dans la forme étirée.

Figure 19 : les deux états du muscle
Il est donc possible de contracter ou d'étirer une molécule par une réaction chimique, de manière très substantielle. La mise en mouvement d'objets ou de particules beaucoup plus grands que cette espèce suscite actuellement beaucoup d'intérêt.
Les moteurs et machines moléculaires fondés sur des molécules non entrelacées : un exemple de système mis en mouvement par la lumière
Plusieurs machines moléculaires ont été proposées par différents laboratoires, qui travaillent sur des composés qui ne comportent pas d'anneaux entrelacés. Nous discuterons brièvement un exemple précis, conduisant à un véritable dispositif micrométrique.
Un groupe de chercheurs hollandais (Feringa et al.) a publié en 2006, dans la revue Nature, un article à propos d'un nanomoteur qui engendre la rotation d'objets de l'ordre du micron. Il s'agit en fait d'un moteur moléculaire intégré dans un film de cristal liquide (figure 20) qui utilise la lumière pour faire tourner des objets de grande taille, par comparaison à celle du moteur moléculaire lui-même.

Figure 20
Le groupe de Feringa a déposé un barreau de verre (5x28mm) sur ce film de cristal liquide dopé. Sous irradiation lumineuse, le petit barreau est entraîné et il est possible de visualiser clairement la rotation, ce qui constitue une très jolie preuve de principe.
Finalement, quelles sont les motivations des chercheurs travaillant dans le domaine des machines et moteurs moléculaires de synthèse ?
Tout d'abord, la fabrication de tels objets, molécules ou dispositifs, représente un véritable défi synthétique : les molécules pouvant donner naissance à un moteur ou à une machine moléculaire sont complexes et originales. Leur synthèse nécessite beaucoup de temps et de talent. Leur obtention représente un véritable exploit, que ce soit au niveau conceptuel ou du point de vue expérimental.
Ensuite, c'est la possibilité de reproduire les fonctions les plus simples des moteurs biologiques qui attire les chercheurs. Il faut cependant noter que les machines moléculaires accessibles aujourd'hui sont extrêmement primitives, comparées aux machines naturelles très complexes mises au point par la nature au cours de l'évolution.
Pour finir, ce sont certainement les nombreux domaines d'applications possibles qui captivent également les chercheurs :
-le stockage et le traitement de l'information au niveau moléculaire (écrire / lire / effacer)
-la mise au point de robots microscopiques capables d'assurer des fonctions variées
-en chimie médicinale : le transport d'une molécule jusqu'à un endroit précis ou celle-ci sera utile (médicament), l'ouverture / la fermeture d'une valve ou d'une porte qui contrôle le flux d'une molécule dans un fluide biologique, le pilotage d'une micro-seringue susceptible d'injecter un composé dans une cellule...

Remerciements
Caténanes :
-synthèse et chimie de coordination :
Laboratoire de Chimie Organo-Minérale (Strasbourg) :
Christiane Dietrich-Buchecker, Jean-Claude Chambron, Jean-Marc Kern, et beaucoup
d'autres...
-structures cristallographiques par diffraction des rayons X :
Claudine Pascard, Michèle Césario (Gif-sur-Yvette)
Jean Fischer, André De Cian, Nathalie Gruber, Richard Welter (Strasbourg)
Mouvement de caténanes et rotaxanes complexés au cuivre :
-catenanes in motion :
Aude Livoreil, Diego J. Cardenas
-translation of a ring along an axle:
Jean-Paul Collin, Pablo Gaviña
-pirouetting of a ring along the axle:
Laurence Raehm, Jean-Marc Kern, Ingo Poleschak, Ulla Létinois, Jean-Paul Collin
-towards molecular muscles :
Maria Consuelo Jiménez, Christiane Dietrich-Buchecker

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon