|
|
|
|
 |
|
LANGUE ELECTRONIQUE |
|
|
|
|
|
Paris, 18 octobre 2012
Une nouvelle méthode pour concevoir des langues électroniques
De la même façon que les nez électroniques sont capables d'analyser des gaz (odeurs), les langues électroniques sont dédiées à l'analyse des liquides et trouvent de plus en plus d'applications dans l'industrie agroalimentaire, l'analyse de l'environnement et le domaine de la santé. Ces dispositifs qui s'inspirent des procédures physiologiques du goût, utilisent des capteurs intégrant différents composés, souvent longs à fabriquer. Des chercheurs du CEA, du CNRS, de l'Université Joseph Fourier et de l'Université Paris-Sud1, ont mis au point une méthode novatrice qui simplifie grandement la conception de ces langues électroniques, en s'inspirant de la façon dont des protéines sont reconnues par les Héparanes Sulfates (sucres complexes naturels) présents à la surface des cellules. Ces résultats ont été publiés dans la revue Angewandte Chemie du 8 octobre.
Les auteurs de l'étude ont mis au point une méthode combinatoire évitant de s'astreindre à la préparation de nombreuses molécules différentes utilisées classiquement pour les langues électroniques. Les chercheurs préparent d'abord différentes solutions en mélangeant seulement deux petites molécules ayant des propriétés physico-chimiques distinctes, et en variant leurs proportions relatives. Ils déposent ensuite des gouttes de ces solutions sur un substrat, afin de créer un réseau de plots ou capteurs par auto-assemblage des molécules en monocouche. C'est l'ensemble des signaux issus de tous les capteurs qui constitue la signature, ou le "goût", d'une protéine et permet de générer son « profil 2D ou 3D » caractéristique. Cela a permis par exemple de distinguer des chimiokines de structures très voisines. Si plusieurs protéines sont présentes simultanément, le "goût" du mélange peut être décomposé en ses composantes individuelles et chaque protéine reconnue. Dans l'exemple relaté dans Angewandte Chemie, avec deux molécules, onze récepteurs combinatoires sont produits, ce qui génère onze signaux. En passant de 2 à 3 molécules différentes dans la composition des plots, on multiplie par 6 le nombre de récepteurs combinatoires distincts et on affine d'autant la sensibilité de la langue pour reconnaître des protéines très similaires.
Pour la détection du signal, les chercheurs ont utilisé une technique déjà connue mais jamais utilisée dans ce domaine, l'imagerie par résonance de plasmons de surface (SPRi) : le substrat est un prisme optique recouvert d'une fine couche d'or dans laquelle les mouvements collectifs des électrons (plasmons) sont modifiés chaque fois qu'une protéine s'adsorbe sur l'un des capteurs. Cette modification est mesurée optiquement. Les avantages de cette technique sont nombreux : pas besoin de marqueur fluorescent ou radioactif, lecture en parallèle et en temps réel de tous les plots.
Grâce à sa simplicité, cette nouvelle approche pourrait conduire au développement de langues artificielles fiables et peu onéreuses, pour l'agroalimentaire, l'analyse de l'environnement ou le domaine de la santé.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
NANOTECHNOLOGIE ET SEMI-CONDUCTEURS |
|
|
|
|
|
Paris, 19 novembre 2012
Une avancée majeure en microélectronique : production de nano-rubans de graphène semi-conducteurs
Le graphène, cristal bidimensionnel composé d'une couche unique d'atomes de carbone, possède des propriétés très prometteuses pour l'électronique. Cependant, pour que ces applications potentielles se concrétisent, il était nécessaire d'obtenir une forme semi-conductrice de ce matériau. Huit ans après sa découverte, c'est chose faite, grâce aux travaux d'une équipe franco-américaine menée par le Georgia Institute of Technology (USA), et incluant des scientifiques du CNRS, du synchrotron SOLEIL, de l'Institut Jean Lamour (CNRS/Université de Lorraine, Nancy) et de l'Institut Néel (Grenoble). Les chercheurs sont parvenus à mettre au point une technique de production de bandes de graphène semi-conductrices basée sur le contrôle du substrat sur lequel se produit la croissance du graphène. Leurs résultats, publiés dans Nature Physics le 18 novembre 2012, ouvrent la voie à une électronique de très haute fréquence.
Le graphène se présente comme une monocouche d'atomes de carbone dont l'empilement constitue le graphite. De très nombreuses recherches sont menées depuis une dizaine d'années sur ce matériau. En effet, ses propriétés hors-normes, mobilités électroniques élevées, forte conductivité thermique, stabilité chimique et possibilité de moduler sa conductance électrique par un champ électrique, le rendent particulièrement attrayant pour l'électronique. En particulier, sa mobilité électronique, c'est-à-dire la vitesse à laquelle se déplacent les électrons en son sein, lui promettent des applications dans l'électronique de très haute fréquence, ou térahertz.
Mais voilà, sous sa forme naturelle, le graphène possède une structure métallique. Il est par conséquent conducteur de courant. Or, pour que ce matériau soit utilisable en microélectronique, il est nécessaire de l'obtenir sous une forme semi-conductrice. C'est ce que sont parvenus à obtenir les chercheurs de l'équipe franco-américaine.
En s'appuyant notamment sur les résultats de la ligne de lumière CASSIOPEE du synchrotron SOLEIL, les scientifiques sont parvenus à mettre au point une technique de production de bandes de graphène semi-conductrices. Basée sur le contrôle de la géométrie du substrat sur lequel a lieu la croissance du graphène, elle consiste à graver des nano-sillons sur une surface en carbure de silicium (SiC). Sur ce substrat, le graphène croît sous forme d'un ruban dont le bord, semi-conducteur, est lié à du graphène métallique. Cette bande semi-conductrice ne mesure que quelques nanomètres de largeur.
Cette technique permet non seulement de travailler à température ambiante, mais également d'obtenir une bande de graphène semi-conductrice cinq fois plus fine que le record détenu par IBM en lithographie. Par ailleurs, la production de graphène est considérée comme extrêmement coûteuse. Or, l'équipe franco-américaine est parvenue à produire des dizaines de milliers de ces rubans aux bords semi-conducteurs, ce qui rend envisageable leur production à l'échelle industrielle. Un pas de plus vers la fabrication de circuits intégrés à haute densité à base de carbone a bel et bien été franchi.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
NANO-FIBRES PLASTIQUES |
|
|
|
|
|
Paris, 20 AVRIL 2012
Des nano-fibres plastiques hautement conductrices qui se construisent « toutes seules »
Deux équipes du CNRS et de l'Université de Strasbourg, menées par Nicolas Giuseppone 1 et Bernard Doudin2, ont réussi à fabriquer des fibres plastiques fortement conductrices, de quelques nanomètres d'épaisseur. Ces nano-fils, qui font l'objet d'un brevet déposé par le CNRS, se construisent « tout seuls » sous la seule action d'un flash lumineux ! Peu coûteux à obtenir et faciles à manipuler contrairement aux nanotubes de carbone3, ils allient les avantages des deux matériaux utilisés à ce jour pour conduire le courant électrique : les métaux et les polymères organiques plastiques4. En effet, leurs remarquables propriétés électriques sont proches de celles des métaux. De plus, ils sont légers et souples comme les plastiques. De quoi relever l'un des plus importants défis de l'électronique du 21e siècle : miniaturiser ses composants jusqu'à l'échelle nanométrique. Ces travaux sont publiés le 22 avril 2012 dans l'édition en ligne avancée de la revue Nature Chemistry. Prochaine étape : démontrer que ces fibres peuvent être intégrées industriellement dans des appareils électroniques comme les écrans souples, les cellules solaires, etc.
Lors de précédents travaux publiés en 20105, Nicolas Giuseppone et ses collègues étaient parvenus à obtenir pour la première fois des nano-fils. Pour ce faire, ils avaient modifié chimiquement des molécules de synthèse utilisées depuis plusieurs dizaines d'années dans l'industrie pour le processus de photocopie Xerox® : les « triarylamines ». A leur grande surprise, ils avaient observé qu'à la lumière et en solution, leurs nouvelles molécules s'empilaient spontanément de manière régulière pour former des fibres miniatures. Ces fils longs de quelques centaines de nanomètres (1 nm = 10-9 m, soit un milliardième de mètre), sont constitués par l'assemblage dit «supramoléculaire » de plusieurs milliers de molécules.
Les chercheurs ont ensuite étudié en détail, en collaboration avec l'équipe de Bernard Doudin, les propriétés électriques de leurs nano-fibres. Cette fois-ci, ils ont mis leurs molécules en contact avec un microcircuit électronique comportant des électrodes en or séparées de 100 nm. Puis ils ont appliqué un champ électrique entre celles-ci.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
ATTOSECONDE...10-18S |
|
|
|
|
|
Paris, 28 novembre 2012
Le "phare" attoseconde : une méthode simple pour générer des impulsions ultra-brèves uniques
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide (ordre de grandeur : l'attoseconde, soit 10-18 s). Un moyen d'étudier ces phénomènes consiste à utiliser des impulsions de lumière ultra-brèves, uniques et bien caractérisées à cette échelle de temps. Grâce à la démonstration réalisée par les chercheurs du CEA-IRAMIS1 et du Laboratoire d'Optique Appliquée (CNRS/ENSTA-Paris Tech/École polytechnique), il est possible de disposer aujourd'hui d'une source de lumière particulièrement bien adaptée pour de telles recherches sur le comportement de la matière. Ces résultats sont publiés dans Nature Photonics, le 1er décembre 2012.
L'observation de la dynamique électronique extrêmement rapide au cœur des atomes ou des molécules nécessite l'utilisation d'impulsions dans le domaine attoseconde, permettant de réaliser des expériences de type « pompe-sonde », où une première impulsion vient exciter le système, et une seconde observer l'effet de cette excitation, après un délai variable.
La méthode actuelle et ses limites
De telles impulsions ne peuvent être générées par les technologies usuelles de l'optique laser. Le seul moyen démontré à ce jour pour atteindre d'aussi courtes durées, utilise l'interaction d'impulsions laser femtosecondes (10-15 s) ultra-intenses avec la matière : en interagissant avec la cible, cette impulsion se déforme, ce qui permet d'obtenir une succession d'impulsions de quelques dizaines d'attosecondes chacune (fig.1). Ces impulsions temporellement très proches, sont difficilement exploitables pour des expérimentations, et depuis une dizaine d'années, différentes méthodes ont été proposées pour extraire une impulsion attoseconde unique.
L'innovation apportée par l'étude
Pour produire des impulsions attoseconde isolées, la nouvelle idée des scientifiques, plus simple et plus facilement exploitable, a été de disperser spatialement la succession d'impulsions, à la manière du faisceau de lumière d'un phare. L'émission de chaque impulsion attoseconde se produit ainsi dans une direction légèrement différente, permettant d'obtenir une série d'impulsions attoseconde bien distinctes par leur direction de propagation.
Loin de la cible solide, les impulsions attoseconde successives sont bien distinctes et leur espacement de plusieurs millimètres, permet de les isoler les unes des autres.
Le principe de cette nouvelle approche, proposé initialement par l'équipe de l'IRAMIS, a d'abord été validé théoriquement par des simulations numériques, réalisées avec les moyens de calcul du GENCI (Grand équipement national de calcul intensif). La démonstration expérimentale a ensuite été effectuée au Laboratoire d'Optique Appliquée (École polytechnique-CNRS-ENSTA-ParisTech) sur une chaîne laser délivrant des impulsions proches du cycle optique à très haute cadence, grâce à une très étroite collaboration entre les deux laboratoires.
L'effet observé ouvre de nouvelles perspectives pour la jeune science attoseconde, en plein développement depuis 10 ans. En permettant d'obtenir, à partir d'une seule impulsion laser, plusieurs impulsions attoseconde isolées, sous forme de faisceaux bien séparés angulairement et parfaitement synchrones, les « phares » attoseconde constituent des sources de lumière idéales pour de futures expériences pompe-sonde visant à étudier la dynamique électronique dans la matière.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante |
|
|
|
|
|
|