ecole de musique piano
     
menu
 
 
 
 
 
 

LES ARCHITECTES DU VIVANT

 

LES ARCHITECTES DU VIVANT (1998)
Les protéines sont des macromolécules qui sont à la base du fonctionnement cellulaire des organismes vivants. Pour connaître leurs fonctions, il est indispensable de connaître leur structure car leur forme va conditionner leurs fonctions. La cristallographie par diffraction de rayons X est une technique permettant de visualiser les structures moléculaires. Pour des raisons encore inexpliquées, une molécule organique, par mise en solution puis évaporation, va former un dépôt cristallin. Les cristaux, éclairés par un faisceau de rayons X, fournissent un diagramme de diffraction qui permet de reconstituer l'image de la molécule. La source de rayons X utilisée est le rayonnement synchrotron émis par les accélérateurs de particules. Une des applications principales de l'étude des protéines est la mise au point de médicaments. En effet la connaissance de la forme de la zone active d'une molécule permet de synthétiser des inhibiteurs qui, s'insérant dans cette zone, en bloquent la fonction : il est ainsi possible d'inhiber des fonctions indispensables à la survie des virus.

Générique
Réalisateur : TERNAY Jean-François (CNRS AV) Production : CNRS AV, CSI-Science Actualités Production exécutive : CNRS AV Diffuseur : CNRS Images, http://videotheque.cnrs.fr/

 

VIDEO         CANAL  U          LIEN


(si la video n'apparait pas,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

BIO-INFORMATIQUE

 

Paris, 19 novembre 2013


Lancement d'E-Biothon, une plateforme en réseau pour accélérer et faire progresser la recherche en bio-informatique
Le CNRS, IBM, Inria, l'Institut français de Bioinformatique et la start-up innovante SysFera déploient E-Biothon, une plateforme Cloud expérimentale (1) pour accélérer et faire progresser la recherche en biologie, santé et environnement. Disposant de 200 teraoctets (1012 octets) de stockage et d'une puissance de calcul de 28 téraflops (1012 flops), elle fournira aux chercheurs et à l'ensemble de la communauté scientifique un portail applicatif et une puissance de calcul importante. Ceci permettra d'aborder le traitement des données complexes de la biologie d'aujourd'hui afin de mettre au point les logiciels applicatifs de demain. La plateforme est présentée du 18 au 21 novembre 2013 lors de l'événement majeur du calcul haute performance : le salon Supercomputing (SC 13) à Denver.
La France a toujours été à la pointe dans la recherche médicale, notamment en ce qui concerne les grandes "épidémies" et pathologies de notre temps (SIDA, cancer ou encore diabète). L'analyse génétique et protéomique des virus ou des patients apparaît de plus en plus importante pour aider à découvrir de nouveaux traitements. Les avancées technologiques récentes, tel que les séquenceurs haut-débit, permettent aux chercheurs en biologie d'avoir accès à des quantités gigantesques d'informations brutes (des péta-octets de données sont générées par an) sur la composition des virus, des bactéries ainsi que sur l'espèce humaine. Analyser ces données pour en extraire du sens, est une tâche ardue qui nécessite d'énormes quantités de traitements informatiques.

C'est pour accélérer ces traitements que le CNRS, IBM, lnria, l'Institut français de Bioinformatique et SysFera se sont associés (2) pour mettre à la disposition des chercheurs cette plateforme de Cloud, hébergée à l'Idris (3), le centre du CNRS pour le calcul numérique intensif de très haute performance, situé à Orsay. Associant un portail applicatif et une puissance de calcul importante, elle permettra de mettre au point les logiciels et les applications qui permettront d'accélérer la recherche en biologie et en santé, en particulier en génomique et en protéomique. L'objectif est de faire progresser plus rapidement la compréhension des maladies génétiques, notamment les maladies neuromusculaires et d'accélérer drastiquement la découverte de nouveaux traitements de rupture. Elle vise aussi à accélérer la recherche en écologie-biodiversité afin de mieux comprendre notre environnement.

La plateforme est constituée de systèmes haute performance IBM Bluegene/P représentant une puissance de 28 téraflops associée à  200 teraoctets de stockage, et de la solution SysFera-DS qui offre aux utilisateurs un portail web d'accès aux ressources de calcul. À travers ce portail, les chercheurs ont accès à tout un environnement de travail leur permettant d'exécuter simplement les traitements informatiques en lien avec les analyses dans les domaines de la génomique, protéomique et métabolomique,  puis de gérer les données générées, tout cela à partir d'un simple navigateur web.

Dans un premier temps, trois applications pilotes ont été déployées, notamment dans les domaines de l'épidémiologie et de la bio-diversité. Après cette phase initiale de déploiement, l'objectif est maintenant d'ouvrir cette plateforme soutenue par France Grilles et l'Institut français de Bioinformatique, à l'ensemble de la communauté scientifique.

DOCUMENT              CNRS               LIEN

 
 
 
 

MIGRATION CELLULAIRE

 

16 octobre 2013


Migration cellulaire : découverte d'une protéine, frein et volant de la cellule
La migration cellulaire, la capacité de certaines cellules à se mouvoir, est essentielle à de nombreux processus physiologiques et peut être déréglée dans des contextes pathologiques. Une vaste collaboration internationale pilotée par une équipe du Laboratoire d'enzymologie et biochimie structurales (CNRS), et comprenant notamment le CEA et l'ENS1, vient de découvrir une protéine régulant la migration cellulaire. Appelée Arpin, elle constitue un frein à la migration et permet également à la cellule de contrôler la direction de sa migration. Les chercheurs ont pu montrer que ces deux rôles d'Arpin ont été conservés au cours de l'évolution depuis l'amibe jusqu'à l'homme. Ces résultats, publiés dans Nature le 16 octobre, devraient avoir un fort impact sur la recherche contre le cancer. En effet, la migration cellulaire et la formation de métastases sont deux phénomènes étroitement liés.
La migration cellulaire est un processus fondamental dans le développement embryonnaire. C'est notamment grâce aux déplacements coordonnés de cellules au cours de la gastrulation que se dessinent les grands axes d'organisation de l'organisme. Chez l'adulte, les migrations cellulaires sont moins répandues, mais néanmoins nécessaires aux cellules immunitaires qui se déplacent dans l'organisme à la recherche d'agents pathogènes ou pour la cicatrisation de blessures, par exemple.

La migration cellulaire dépend de la formation de réseaux d'une protéine fibreuse, l'actine, qui permettent à la cellule de projeter sa membrane en formant une structure appelée lamellipode. Les fibres d'actine qui génèrent cette force sont branchées entre elles grâce à une machine moléculaire appelée « complexe Arp2/3 ». Afin de mieux comprendre la régulation de ce complexe, les scientifiques ont recherché de nouvelles protéines qui interagissent avec lui, à l'aide d'un crible bioinformatique. Ils ont ainsi identifié une protéine qui était jusqu'alors inconnue.  

Les chercheurs se sont aperçus que cette nouvelle protéine, baptisée Arpin, était un inhibiteur du complexe Arp2/3. Arpin freine en effet la projection de la membrane. Le mécanisme par lequel elle opère était tout à fait inattendu : celle-ci ne s'active qu'au moment où le signal de projeter la membrane est donné, un peu comme si un conducteur freinait au même moment qu'il accélérait.

Pour mieux comprendre le fonctionnement d'Arpin, les chercheurs ont éliminé cette protéine dans plusieurs types de cellules très différents, telles que des amibes ou des cellules tumorales. Ils ont ainsi montré que ces cellules dépourvues de ce frein moléculaire migraient plus vite, mais aussi de façon plus rectiligne. Ainsi, non seulement la protéine Arpin freine la cellule, mais en plus, elle lui permet de tourner. L'effet de cette protéine étant localisé dans la membrane cellulaire, son activation freine la progression du lamellipode sans empêcher la formation d'un autre lamellipode ailleurs dans la membrane, changeant ainsi la trajectoire de la cellule. Cette nouvelle protéine joue donc à la fois le rôle de frein et de volant.

Les chercheurs pensent que la découverte d'Arpin aura un fort impact dans le domaine des recherches sur le cancer. En effet, les cellules cancéreuses sont capables de réactiver le programme de migration cellulaire et ainsi produire des métastases qui envahissent l'organisme. La découverte de cette protéine pourrait donc avoir des répercussions tant sur le diagnostic des tumeurs invasives que sur les interventions thérapeutiques qui visent à bloquer la formation de métastases.

DOCUMENT           CNRS          LIEN

 
 
 
 

REPRODUIRE L'EVOLUTION DES BACTERIES

 

Paris, 20 décembre 2012

Reproduire et comprendre l'évolution des bactéries dans un tube à essai
La capacité des bactéries à produire des mutations, et donc à s'adapter, évolue en fonction de leur environnement et de leur niveau d'adaptation. C'est ce que viennent de montrer des chercheurs du Laboratoire adaptation et pathogénie des micro-organismes (LAPM, CNRS/Université Joseph Fourier-Grenoble) (1), en collaboration avec le Génoscope (CEA/IG-Evry). Les mutations du génome des bactéries participent à leur capacité d'adaptation et sont, par exemple, responsables de l'émergence de bactéries multi-résistantes aux antibiotiques ou de bactéries pathogènes responsables d'infections nosocomiales. Comprendre l'évolution des mécanismes qui contrôlent l'apparition des mutations est donc essentiel pour améliorer la lutte contre ces micro-organismes. Ces résultats viennent d'être publiés dans la revue Proceedings of the National Academy of Science (PNAS).
Les mutations de l'ADN sont à l'origine des variations qui permettent l'évolution des organismes vivants. Elles peuvent avoir des effets positifs, négatifs ou neutres, et c'est l'équilibre entre ces différents effets qui va conduire à l'adaptation des organismes vivants à leur environnement. Comprendre comment la production de mutations varie au cours du temps est donc indispensable pour décrire les processus évolutifs.

L'équipe dirigée par Dominique Schneider au sein du LAPM a utilisé la plus longue expérience d'évolution en cours dans le monde pour appréhender cette question. Dans le cadre de ce projet, des populations bactériennes ont été initiées à partir d'une cellule unique d'Escherichia coli (« l'ancêtre ») et sont cultivées nuit et jour, 365 jours par an, depuis 1988. Les chercheurs effectuent des prélèvements à intervalles réguliers sur ces populations, et les conservent, ce qui permet d'obtenir de véritables archives fossiles vivantes et d'analyser leur évolution. Au cours de cette longue expérience qui représente aujourd'hui plus de 55 000 générations (ce qui, à l'échelle humaine, correspond à près de deux millions d'années), les chercheurs ont identifié une population de bactéries qui a vu sa capacité à produire des mutations augmenter de plus de 100 fois, constituant ce que les généticiens appellent une population hypermutatrice, avant de constater que cette capacité continuait à évoluer…

En pratique, les chercheurs ont séquencé l'intégralité du génome bactérien à différents temps au cours de l'évolution (171 clones bactériens au total, séquençage réalisé par le Génoscope). Les données de séquençage ont été intégrées à la plateforme MicroScope (2), développée au Génoscope, et comparées au génome de l'ancêtre. Après 20 000 générations, ils ont observé une augmentation très importante du nombre de mutations, la population étant devenue hypermutatrice. En effet, d'une moyenne d'environ 40 à 50 mutations par génome à 20 000 générations, les bactéries sont passées à une moyenne de plus de 700 mutations à 40 000 générations. Mais le plus étonnant est que cette évolution s'est produite en plusieurs étapes avec une augmentation massive du taux de mutation suivie d'une diminution de ce taux de mutation.

L'équipe de Dominique Schneider a pu décrypter les mécanismes moléculaires mis en jeu dans ce processus multi-étapes, en analysant la séquence des génomes entiers de ces bactéries. Au niveau évolutif, cette population bactérienne est passée successivement d'une étape où le taux de mutation était élevé, ce qui lui a permis de s'adapter à son environnement, à une étape où le taux de mutation a diminué mais est resté à un niveau intermédiaire, ce qui lui a permis de poursuivre son adaptation en conservant une probabilité plus élevée de « trouver » des mutations bénéfiques, tout en réduisant la proportion de mutations néfastes.

Grâce à cette expérience d'évolution en tube à essai, les chercheurs ont pu comprendre les différentes étapes qui président in vivo à l'apparition de bactéries mutantes. De telles bactéries hypermutatrices sont connues pour être associées à de graves problèmes de santé publique, comme l'apparition de maladies nosocomiales et de bactéries multi-résistantes aux antibiotiques, ou de certains types de tumeurs chez les eucaryotes (3). Les chercheurs espèrent que le décryptage de ce processus au niveau de génomes entiers va permettre de modéliser le comportement des bactéries pathogènes, de contrôler leurs capacités d'adaptation, et, à terme, de développer de nouveaux outils thérapeutiques pour faire face aux infections bactériennes.

DOCUMENT             CNRS              LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon