La sécurisation des données intervient à chaque instant dans de très nombreux domaines de la vie privée ou publique et représente un enjeu stratégique pour les entreprises, les grands groupes industriels, les banques ou encore l’État. Les protocoles utilisés aujourd’hui pour le chiffrement et le déchiffrement des messages utilisent des codes mathématiques de plus en plus complexes avec des clefs publiques de plus en plus longues, à mesure qu’augmente la puissance des ordinateurs (classiques) capables de les casser. L’avènement possible de l’ordinateur quantique impose de recourir à d’autres méthodes. Des algorithmes quantiques, implémentés sur un tel ordinateur, mettraient en effet aisément à mal les protocoles classiques.
LA PROMESSE DE L’INVIOLABILITÉ DES COMMUNICATIONS
La cryptographie quantique, qui repose sur la transmission de qubits générés aléatoirement, assure l’inviolabilité des échanges en toutes circonstances. Ces qubits constituent des clefs, qui sont ensuite utilisées dans des protocoles de chiffrement classiques. Dans la mesure où il est impossible de cloner une information quantique sans qu’elle soit détruite, ou de mesurer un état quantique sans le modifier, la lecture de l’information par un intrus serait immédiatement détectée par les destinataires du message.
Pour envoyer des qubits sur de grandes distances, le support privilégié est le photon, qui autorise l’encodage de l’information sur des variables observables telles que la polarisation de la lumière.
La rencontre, à la fin des années 1980, de l'optique quantique et de l'optique non-linéaire a permis le développement de nouvelles sources de photons uniques et intriqués, compactes, efficaces et simples d'utilisation. D’autres techniques ont également vu le jour, autorisant la fabrication et l’exploitation d’émetteurs artificiels, tels que les boîtes quantiques semi-conductrices ou les centres colorés dans les cristaux de diamant.
Zoom sur la boîte quantique
Une boîte quantique est constituée d'une inclusion nanométrique d'un matériau semi-conducteur dans un autre semi-conducteur. Maintenue à des températures cryogéniques (1-50 K), elle se comporte comme un atome artificiel, à la différence qu'elle est beaucoup plus facilement maîtrisable, en permettant l'émission très pure de photons uniques.
VERS DES RÉSEAUX QUANTIQUES À FORT DÉBIT ET À GRANDE ÉCHELLE
Ces technologies, déjà relativement mûres, donnent lieu à des systèmes développés et commercialisés par quelques petites entreprises, comme la compagnie suisse ID-Quantique. Leurs solutions permettent déjà de transmettre des messages, mais pas d’encoder des communications à grande échelle, car le débit de transmission de qubits sécurisés reste encore faible. Par ailleurs, en l’absence de relais et de répéteurs sécurisés, leur système ne peut aujourd’hui fonctionner que sur des distances limitées à quelques centaines de kilomètres.
Dans les laboratoires, l’heure est donc à la construction de véritables réseaux quantiques, permettant de générer, véhiculer, stocker et synchroniser l'information quantique entre sites distants, au même titre que ce qui se fait quotidiennement dans nos réseaux classiques. C’est à ce prix que la communication quantique pourra prendre véritablement son essor.
QUELLES RECHERCHES SUR LA COMMUNICATION QUANTIQUE ?
Afin d’augmenter les débits, la portée et la sécurité des liens de communication quantique, les recherches actuelles se tournent également vers les dernières innovations technologiques en photonique et en micro-électronique.
Des équipes travaillent ainsi à concevoir les relais et répéteurs qui manquent aux systèmes actuels, afin de téléporter ou stocker des états intriqués photoniques en deux endroits distants, puis de synchroniser la réémission des photons.
En parallèle, une nouvelle voie pour une communication quantique intercontinentale s’est ouverte en 2017, lorsqu’une source embarquée sur un satellite chinois a permis de distribuer des photons intriqués entre deux stations sol, séparées par une distance record de 1 200 km. L’augmentation drastique de la portée des réseaux quantiques pourrait en effet passer par l’interconnexion entre les technologies qui relèvent des liens satellitaires et des liens fibre optique.
De nouvelles idées d’hybridation émergent sans cesse : certaines visent à introduire la cryptographie quantique dans les systèmes télécoms existants, d’autres envisagent des solutions post-quantiques à base de cryptographie classique actuellement non attaquables par l’ordinateur quantique.
VERS LA CRYPTOGRAPHIE POST-QUANTIQUE
La cryptographie quantique a néanmoins une limite : puisqu’elle nécessite une liaison optique et ne peut s’opérer via des liaisons radio. C’est pourquoi les chercheurs travaillent déjà sur un autre type de cryptographie, la cryptographie post-quantique dont l’objectif est de développer des systèmes sans liaison physique, capables de résister aux algorithmes quantiques tels que l’algorithme de Shor et de protéger les communications des ordinateurs dits classiques.
Cette cryptographie s’appuie sur des outils classiques qui tournent sur des machines classiques. Seulement, pour résister à un attaquant doté d’un ordinateur quantique, ces cryptosystèmes post-quantiques doivent reposer sur des problèmes mathématiques qui échappent aux ordinateurs quantiques et notamment à l'algorithme de Shor.
Zoom sur l'algorithme de Shor
L’algorithme de Shor, qui doit son nom à son concepteur Peter Shor, est un algorithme quantique probabiliste. Il ouvre la voie à la factorisation de très grands nombres en un temps record. Or, la plupart des protocoles de cryptographie classique, comme ceux utilisés pour assurer la confidentialité d'une carte bancaire, reposent sur la complexité de cette factorisation. Beaucoup de systèmes cryptographiques deviendraient vulnérables si l'algorithme de Shor était un jour implémenté dans un calculateur quantique.
En savoir plus sur l'algorithme de Shor (à 05:14) :
Ces techniques, connues depuis les années 1990, sont principalement à base de réseaux euclidiens (fondés sur des objets géométriques) ou de codes correcteurs d’erreurs (technique de codage basée sur la redondance). Elles donnent néanmoins lieu à des cryptosystèmes dont le paramétrage est plus délicat, car mettant en jeu plusieurs paramètres interdépendants (comme la dimension du réseau ou la taille des coefficients). C’est ce qui fait toute la complexité de la cryptographie post-quantique, qui pourrait prochainement devenir le standard de la cryptographie des ordinateurs classiques.
Pour assurer la transition entre la cryptographie actuelle et post-quantique, une cryptographie hybride devrait se développer, composée de deux couches de chiffrement, l’une classique et l’autre post-quantique.
La cryptographie post-quantique fait actuellement l’objet de nombreuses recherches. Ces dernières portent entre autres sur :
* le chiffrement homomorphe, une technique de cryptographie fondée sur les réseaux euclidiens et permettant de calculer dans le domaine chiffré,
* l’implémentation de ces techniques dans des objets à faible puissance de calcul et des systèmes embarqués,
* mais aussi sur la résistance aux attaques physiques pendant les phases de manipulation de la clé privée.
BathyBot : réveil d’un robot dans les profondeurs de la Méditerranée
BathyBot : réveil d’un robot dans les profondeurs de la Méditerranée
11 mai 2023 BIOLOGIE ENVIRONNEMENT INGÉNIERIE
* BathyBot est le premier robot profond en Europe installé de façon permanente, à plus de 2400 mètres de profondeur.
*
* Il vient de débuter sa mission en mer Méditerranée et de dévoiler les premières images de son environnement.
*
* Accompagné d’un récif artificiel et d’une batterie d’instruments, BathyBot permettra d’étudier la biodiversité, la bioluminescence et les processus biogéochimiques des fonds marins.
*
BathyBot vient de s’éveiller, au fond de la mer Méditerranée, à 2400 mètres sous la surface. Premier robot mobile téléopéré installé de façon permanente aussi profondément, c’est aussi le premier qui documentera en continu la colonisation d’un récif artificiel dans ce milieu, dans le cadre d’une mission dirigée par une équipe du CNRS. BathyBot, le récif artificiel BathyReef, et d’autres instruments océanographiques ont été déployés dans le golfe du Lion par la Flotte océanographique française opérée par l’Ifremer.
Il n’explorera pas une autre planète, mais un environnement presque aussi méconnu. Depuis le 19 avril, BathyBot observe le plancher océanique de la mer Méditerranée, à plus de 2400 mètres de profondeur. Premier robot scientifique au monde installé en permanence à une telle profondeur, il permettra, avec d’autres instruments, d’étudier ce milieu et ses caractéristiques en temps réel grâce à sa connexion haut-débit, pendant au moins cinq ans.
Imaginé scientifiquement par les équipes de l’Institut méditerranéen d'océanologie (CNRS/Aix-Marseille Université/IRD/Université de Toulon)1 et techniquement par la Division technique de l’Institut national des sciences de l'Univers du CNRS, BathyBot embarque des capteurs pour mesurer de nombreux paramètres : température, salinité, vitesse et direction du courant, flux particulaire et concentration en oxygène. Il analysera la bioluminescence environnante à l’aide d’une caméra hyper-sensible.
BathyBot permettra d’étudier la biodiversité des grands fonds sur son site d’opération, l’impact des mouvements d’eau sur ces écosystèmes, le cycle du carbone et son évolution dans les profondeurs face aux perturbations atmosphériques, mais aussi l’acidification, avec l’évolution de la température et de l’oxygénation, des eaux profondes méditerranéennes. Téléopéré depuis la terre ferme, il sera les yeux des scientifiques dans ce monde inconnu.
Ils espèrent ainsi pouvoir observer la colonisation du récif artificiel BathyReef placé aux côtés du robot. Celui-ci a été réalisé en béton, un matériau inerte et minéral, et à partir d’une structure complexe, bio-inspirée, offrant une large surface colonisable. Le laboratoire de recherche de l’agence d’architecture Rougerie+Tangram a conçu BathyReef en optimisant l’usage de ressources, avec notamment une structure ouverte. Sa réalisation en impression 3D béton a ensuite été assurée par le groupe Vicat. Le duo formé par BathyReef et BathyBot sera le premier à proposer le suivi de la colonisation d’un récif artificiel immergé volontairement à de telles profondeurs.
Ils avaient été mis en place en février 2022, au cours d’une mission en mer menée par le navire le Pourquoi pas ? et le sous-marin Nautile de la Flotte océanographique française opérée par l’Ifremer. Un sismomètre et une sonde de radioactivité, ainsi qu’une biocaméra pour observer des événements passagers et tester des scénarios de stimulation lumineuse des espèces profondes ont également été installés. Ces instruments et BathyBot ont tous été connectés à la Boîte de jonction scientifique mise au point par l’Ifremer. Ce réseau intelligent fait office à la fois de « multiprise » pour les alimenter en énergie et de « box internet haut-débit » pour les contrôler et envoyer les données acquises en temps réel vers le continent.
Malheureusement, BathyBot étant resté trop longtemps sans alimentation, le système permettant ses déplacements sur le fond n’est pour l’instant pas opérationnel. Cette déception a vite été dépassée par les images exceptionnelles déjà acquises, après seulement quelques jours, au travers des deux caméras du robot : des poissons très nombreux, et des organismes transparents plus discrets s’y invitent chaque jour. En outre, une future mission permettra peut-être de résoudre cette difficulté technique
Ces nouveaux équipements dédiés aux sciences environnementales enrichissent le Laboratoire sous-marin Provence Méditerranée (LSPM)2 , un observatoire permanent situé à plus de 2400 mètres de profondeur au large de Toulon dans le golfe du Lion. Grâce à sa connexion au câble électro‐optique de 45 km qui le relie à La Seyne-sur-Mer et à la Boîte de jonction scientifique, les équipements du LSPM peuvent être contrôlés, et les données récupérées, en temps réel.
La composante océanographique du LSPM appartient au réseau d’observatoires sous-marins de l’infrastructure de recherche européenne EMSO (pour European Multidisciplinary Subsea Observatory). Répartis dans les mers du pourtour européen, les différents sites du réseau permettent l’étude de l’impact du réchauffement climatique sur les océans entourant l’Europe, mais aussi des écosystèmes marins profonds dans une optique de recherche fondamentale et de gestion durable.
Découvrez les premières images capturées par Bathybot à 2500 m de profondeur, ici.
Suivez Bathybot sur Twitter.
Retrouvez le reportage photo de CNRS Images sur la mission de mise à l’eau à bord du Pourquoi pas ?.
D’autres images, photos et vidéos, sont disponibles sur demande.
Une « molécule-interrupteur » polyvalente pour les cellules contrôlées par la lumière
Paris, le 6 mai 2015
Une « molécule-interrupteur » polyvalente pour les cellules contrôlées par la lumière
La structure moléculaire de la pompe ionique KR2, qui permet le transport de sodium à travers les membranes bactériennes, a été déterminée par une équipe associant des chercheurs russes, allemands et français (Institut de biologie structurale, CEA/CNRS/Université Joseph Fourier, Grenoble). Forts de ces résultats, les scientifiques ont pu développer une méthodologie permettant de changer la sélectivité ionique de KR2, transformant cette pompe à sodium en pompe à potassium. Intégrée dans des neurones, la pompe KR2 modifiée pourrait constituer un nouvel outil en optogénétique, champ de recherche à la croisée de l’optique et de la génétique. Ces découvertes sont publiées dans Nature Structural and Molecular Biology le 6 mai 2015.
Le carbone est présent dans tous les grands « réservoirs naturels » de notre planète : atmosphère, océan, végétation, etc. Les échanges entre ces réservoirs se font selon un cycle – dit « cycle du carbone » – qui constitue un élément essentiel du changement climatique en cours.
On distingue quatre grands réservoirs naturels de carbone sur Terre : l’atmosphère, la lithosphère (sols et sous-sols), l’hydrosphère (mers, océans, lacs et rivières) et la biosphère (végétaux, animaux et autres organismes vivants). Si la quantité globale de carbone reste stable sur notre planète, sa répartition entre ces quatre sphères varie continuellement au fil d’échanges et de réactions biologiques, chimiques ou géologiques. Ces échanges se font selon un cycle d’émission et de stockage du carbone dont les variations ont un effet déterminant sur l’évolution globale du climat.
UN CYCLE
À DIFFÉRENTES ÉCHELLES DE TEMPS
Le cycle du carbone est décrit par un ensemble d’interactions entre le monde du vivant, l’air, les sols, le sous-sol, et les océans. Les réservoirs de carbone à considérer ne sont pas les mêmes selon les échelles de temps auxquelles on s’intéresse :
* A l’échelle des temps géologiques (> 1 million d’années) : l'érosion chimique humide des roches pompe du dioxyde de carbone (CO2) de l’atmosphère. Ce carbone est ensuite amené à l’océan sous forme dissoute par les rivières et les fleuves. Il peut sédimenter au fond des océans et être enfoui dans la lithosphère. Sur ces échelles de temps, le cycle du carbone est bouclé par des émissions de CO2 dues aux éruptions volcaniques et aux émissions des surfaces océaniques. Ce cycle « lent » du carbone a vu la formation progressive des réserves d’hydrocarbures après enfouissement de quantités colossales de matières organiques durant plus de 300 millions d’années. Ce sont ces réserves de combustibles fossiles que nous brûlons activement depuis 200 ans et qui émettent du CO2 dans l’atmosphère. Ce CO2 additionnel est le principal facteur de réchauffement du climat depuis 60 ans (effet de serre).
* À l’échelle du dernier million d’années : les concentrations de CO2 et de méthane (CH4) dans l’atmosphère ont varié de façon naturelle : les teneurs sont plus basses pendant les périodes glaciaires que pendant les périodes interglaciaires. Ces variations s’expliquent principalement par les modifications de la répartition de la végétation et des zones humides à la surface de la Terre, et par la modification de la capacité d’absorption de carbone par l’océan.
* A l’échelle séculaire ou saisonnière : le cycle « lent » du carbone ne représente plus l’essentiel des échanges et un cycle « rapide » prend le relai entre les océans, l’atmosphère, la biosphère et les sols. Ce cycle rapide implique les plantes qui absorbent du CO2 lors de leur croissance (photosynthèse) et qui, comme les animaux, respirent et rejettent également du CO2. Lorsqu’elle meurt, la végétation relâche une partie de ce carbone vers l’atmosphère, sous forme de CO2 ou de méthane, mais une autre partie est stockée dans le sol.
*
Actuellement, la végétation et les sols se comportent en puits de carbone et stockent une partie du carbone atmosphérique (sous forme de matière organique, comme le bois ou la tige des feuilles). Une autre partie du carbone atmosphérique est stockée sous forme de CO2 dissous dans les océans, ce qui par ailleurs cause leur acidification. Une fraction de ce carbone dissous est utilisée par les micro-organismes marins pour fabriquer leurs coquilles carbonatées. Ces coquilles s’accumulent dans les sédiments océaniques à la mort des organismes. A l’inverse, les océans peuvent ré-émettre du CO2 vers l’atmosphère (dégazage), notamment dans les eaux les plus chaudes. À l’échelle saisonnière, des variations de la concentration en CO2, en particulier dans l’hémisphère nord, ont été mises en évidence, avec des concentrations plus faibles en été qu’en hiver. Ce phénomène naturel est en lien avec l’intensification de la photosynthèse durant les périodes de printemps et d’été aux latitudes moyennes et hautes, et sa diminution pendant l’hiver. Dans le même temps, la respiration des végétaux et la décomposition de la matière organique du sol émet du CO2 dans l’atmosphère toute l’année, mais avec des flux plus élevées pendant l’été et l’automne.
ENJEUX :
ÉTUDIER LES FLUX ANTHROPIQUES / MAINTENIR L’ÉQUILIBRE DU CYCLE
Depuis les années 1850 et la révolution industrielle, la quantité de carbone dans l'atmosphère augmente (CO2 et CH4) à cause des activités humaines : consommation d’énergies fossiles (charbon, gaz, pétrole) et développement de l’agriculture (déforestation, changement de l’usage des sols…). Ces émissions sont devenues tellement importantes ces dernières décennies qu’elles modifient le rythme naturel du cycle du carbone. L’ampleur des conséquences des activités humaines a alerté la communauté internationale. Elle s’appuie aujourd’hui sur les travaux des chercheurs pour étudier précisément l’impact de l’Homme sur le cycle du carbone et les rétroactions possibles sur le climat.
Le cycle du carbone est donc complexe. Au total, les puits biosphériques et océaniques absorbent en moyenne l’équivalent de 55 % des émissions anthropiques, avec des variations selon les années. Le reste, soit l’équivalent de 45 % des émissions anthropiques, s’accumule donc dans l’atmosphère. Cela représente actuellement une augmentation annuelle de 0.6 % par an de la teneur atmosphérique en CO2.
Bilan atmosphérique : depuis le début de l'ère industrielle la concentration moyenne de CO2 a augmenté de 42 % ; les interactions de l’Homme avec l’environnement rajoutent chaque année 20 milliards de tonnes de CO2 dans l’atmosphère.
R&D :
ÉTUDIER LES ÉVOLUTIONS
DU CYCLE ET SES CONSÉQUENCES
Afin de mieux connaître le cycle du carbone, sa dynamique, et simuler le climat du futur, les chercheurs développent différents outils et méthodes pour comprendre les mécanismes du système climatique et en particulier ceux du cycle du carbone.
* La paléoclimatologie est l’étude des climats anciens. Grâce aux prélèvements de glaces notamment aux pôles, de sédiments marins ou lacustres, ou d’autres archives climatiques naturelles (telles que les « spéléothermes » ou stalactites) en différents endroits de la Terre, les climatologues reconstituent les variations passées du climat. Ils analysent son fonctionnement et son évolution au cours du temps, aussi bien pendant les cycles lents et rapides évoqués ci-dessus. Des techniques précises de datations sont développées pour dater les phénomènes.
* Les réseaux d’observation du CO2 puis du CH4, mis en place depuis plus de 50 ans permettent maintenant un suivi précis et continu des différentes composantes du cycle du carbone : mesure de la pression partielle de CO2 dans les océans, suivi des gaz à effet de serre dans l’atmosphère, mesure des échanges de carbone à l’échelle des écosystèmes (forêt, arbre, sols par exemple). Ces recherches sont menées dans le cadre de programmes nationaux ou internationaux (comme par exemple l’infrastructure de recherche européenne Icos, pour Integrated Carbon Observation System).
* Des modèles numériques complètent les observations des évolutions actuelles et passées du climat et permettent de mieux comprendre le fonctionnement du système climatique, ou de certaines de ses composantes comme le cycle du carbone. Les données permettent de valider les modèles. Les supercalculateurs génèrent alors des simulations d’évolution du climat, passé, présent et futur à partir de scénarii de départ qui peuvent être modulés par les chercheurs (en modifiant par exemple les quantités de carbone rejetées dans l’atmosphère dans l’avenir par les activités humaines).