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Abstract

Computing the minimal polyadic decomposition (also often referred to as canonical decompo-

sition, or sometimes Parafac) amounts to finding the global minimum of a coercive polynomial

in many variables. In the case of arrays with nonnegative entries, the low-rank approximation

problem is well posed. In addition, due to the large dimension of the problem, the decompo-

sition can be rather efficiently calculated with the help of preconditioned non linear conjugate

gradient algorithms, as subsequently shown, if equipped with an algebraic calculation of the

globally optimal stepsize in low dimension. Other algorithms are also studied (gradient and

quasi-Newton approaches) for comparisons. Two versions ofeach algorithm are considered: the

Enhanced Line Search version (ELS) and the backtracking version (alternating with ELS). Com-

puter simulations are provided and demonstrate the good behavior of these algorithms dedicated

to nonnegative arrays, compared to others put forward in theliterature. Finally, applications in

the context of data analysis illustrate various algorithms. The main advantage of the suggested

approach is to explicitly take into account the nonnegativenature of the loading matrices in the

problem parameterization, instead of enforcing positive entries by projection. On the chosen

example, such an approach also happens to be more robust withrespect to possible modeling

errors.
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1. Introduction

The minimal polyadic decomposition of a tensor, sometimes referred to as “Canonical Polyadic”

(CP), is also called “CanDecomp”, “CanD”, or “Parafac”. This decomposition, whose definition

is recalled in Section 2, turns out to be very useful in a wide panel of applications; see e.g.

[6, 8, 14, 28] and references therein. However, several difficulties arise when the CP needs to be

computed. First, even if an exact fit exists with a known number of terms, the calculation of the

CP consists of finding the zeros of a polynomial of degree six or larger, in a very large number

of variables. This problem is numerically very difficult to solve, even if the number of zeros

is finite. Second, if the model is subject to errors, an approximate fit is wished to be computed.

However, it is now well known that a best approximate may not always exist [24, 16, 8]. Third, in

several applications such as hyperspectral imaging or chemometrics, the loading matrices need

to be constrained to be real and nonnegative [5, 28]. We shallsubsequently concentrate on this

framework. Fortunately, one advantage of the latter constraint is that the approximation problem

becomes well posed [16]. Lastly, a recent book has been even dedicated to this particular problem

[5].

Numerical algorithms are provided in the present paper, andare based on preconditioned non

linear conjugate gradient, well matched to large dimensions, combined with a global search

in a chosen dimension. The latter combination permits to escape from local minima. Other

algorithms are also studied (gradient and Quasi-Newton approaches, for the purpose of compar-

ison). Two versions of each algorithm are considered. Note that a non linear conjugate gradient

optimization technique has already been suggested in [23] but with a simple version of precon-

ditioning (by a diagonal matrix).

The article is organized as follows. After a brief introduction, Section 2 starts with some defini-

tions, and properties of third order tensors. The problem ofthe polyadic decomposition of 3-way
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arrays is then stated and existing standard algorithms are pointed out. Section 3 is dedicated

to nonnegative 3-way array factorization. The cost function we suggest to use is introduced,

and basic quantities such as gradient matrices are then calculated. In Section 4, the precondi-

tioned non-linear conjugate gradient approach is presented as well as three other approaches:

gradient, Quasi-Newton, and non-linear conjugate gradient approaches without preconditioning.

With regard to the choice of the step size, two different strategies are studied: a global search

via Enhanced Line Search (ELS) and backtracking alternating withELS. Computer simulations

are provided to illustrate the effectiveness of the proposed algorithms, and to compare them with

other algorithms, which are more standard in the literaturefor CP computations. In Section 5, we

show the usefulness of these algorithms, and explain how they can be applied in Data Analysis.

Finally, a discussion is proposed and a conclusion is drawn in Section 6.

2. Problem statement

2.1. Notation

The outer (tensor) product between two tensorsX ∈ R
I1×I2×...×IN andY ∈ R

J1×J2×...×JM

is denoted byZ = X⊛Y ∈ R
I1×I2×...×IN×J1×J2×...×JM and defined byzi1i2...iN j1j2...jM =

xi1i2...iN yj1j2...jM .

Denote by(·)T matrix transposition. As special cases, the outer product between two vectors

a ∈ R
I andb ∈ R

J yields a rank-one matrixC = a⊛b = abT ∈ R
I×J . The outer product

of three vectorsa ∈ R
I andb ∈ R

J andc ∈ R
K yields a third order rank-one tensorZ =

a⊛b⊛ c ∈ R
I×J×K wherezijk = aibjck.

The Kronecker product between two matricesA = (aij) = [a1,a2, . . . ,aF ] ∈ R
I×F and

B = [b1,b2, . . . ,bG] ∈ R
J×G is defined as:

A⊗B =




a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB
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The Khatri-Rao product between two matrices with the same number of columns,A =

[a1,a2, . . . ,aF ] ∈ R
I×F andB = [b1,b2, . . . ,bF ] ∈ R

J×F , is defined as the column-wise

Kronecker product:A⊙B = [a1 ⊗ b1, a2 ⊗ b2, aF ⊗ bF ] ∈ R
IJ×F .

2.2. Preliminaries

A tensor is an object defined on a product between linear spaces. Once the bases of these spaces

are fixed, a third order tensor can be represented by a three-way array (a hypermatrix). The

order of a tensor hence corresponds to the number of indices of the associated array. One also

talks about the number ofwaysor modes[28]. In this paper, due to the considered applications,

including fluorescence spectroscopy [2][28] or hyperspectral imaging [31], we focus on real

positive 3-way arrays denoted byT = (tijk) ∈ R
I×J×K, admitting the following trilinear

decomposition, also known as a triadic decomposition [12] of T

T =

F∑

f=1

af ⊛bf ⊛ cf , (1)

where the three involved matricesA = (aif ) = [a1,a2, . . . ,aF ] ∈ R
I×F , B = (bjf ) =

[b1,b2, . . . ,bF ] ∈ R
J×F , C = (ckf ) = [c1, c2, . . . , cF ] ∈ R

K×F are the so-calledloading

matrices, whose columns are theloading factors, F is an integer and⊛ stands for the outer

product. Equivalently, we have the relation between array entries:

tijk =

F∑

f=1

aif bjfckf ∀i = 1, . . . , I ∀j = 1, . . . , J ∀k = 1, . . . ,K. (2)

The smallest integerF that can be found such that the equality above holds exactly is called the

tensor rank[15]. For this value ofF , the above decomposition is called the Canonical Polyadic

decomposition (CP) of tensorT. Note that this acronym may also stand for CanDecomp/Parafac,

if some readers prefer. Finally, it is sometimes convenientto assume that all vectors have unit

length, so that the modified model below is then used, insteadof (1):

T =

F∑

f=1

λf af ⊛bf ⊛ cf (3)
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whereλj are scaling factors andλ = [λ1, . . . , λF ]
T . The model (3) can be written in a compact

form using the Khatri-Rao product⊙, as

TI,JK

(1)
= AΛ(C⊙B)T , (4)

TJ,KI

(2) = BΛ(C⊙A)T , (5)

TK,JI

(3) = CΛ(B⊙A)T , (6)

whereTI,JK

(1) (resp.TJ,KI

(2) andTK,JI

(3) ) is the matrix of sizeI×JK (resp.J ×KI andK×JI)

obtained by unfolding the arrayT of sizeI × J ×K in the first mode (resp. the second mode

and the third mode);Λ is theF × F diagonal matrix defined asΛ = diag{λ} where operator

diag{·} returns a square diagonal matrix which contains in its diagonal the elements of the vector

given in argument.

2.3. CP decomposition of 3-ways tensors

Assuming thatF is known (or overestimated), the problem of the polyadic decomposition of a 3-

ways tensorT ∈ R
I×J×K is to estimate the three loading matricesA ∈ R

I×F , B ∈ R
J×F and

C ∈ R
K×F (and eventuallyΛ ∈ R

F×F if the model described in (3) is considered). A rather

classical way to solve such a problem consists of minimizinga suitably designed cost function.

Typically, we minimize (with respect to the three loading matrices), the cost function:

F(A,B,C) = ‖TI,JK

(1) −AΛ(C⊙B)T ‖2F (7)

= ‖TJ,KI

(2) −BΛ(C⊙A)T ‖2F (8)

= ‖TK,JI

(3) −CΛ(B⊙A)T ‖2F , (9)

where‖ · ‖F stands for the Frobenius norm. In the problem of the polyadiccanonical decompo-

sition of the 3-way tensorT, its rankF has to be estimated too.

2.4. Standard approaches

In the tensor literature, one can find several solutions to solve this optimization problem (see for

example [30] for a survey and a comparison of several existing standard methods). The most

popular approach is to apply theALS technique [3, 4, 11, 13], its line search version [2] or
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more recently its enhanced line search version [26]. In suchan approach, the cost function is

alternatively optimized with respect to one given loading matrix, the two others being assumed

fixed and independent, which is clearly suboptimal. The differentialdF of F has to be derived

and finally the gradient components (theI × F matrix∇AF , theJ × F matrix∇BF and the

K × F matrix∇CF) can be calculated.

We have (the caseΛ = IF , whereIF is the identity matrix of sizeF × F was studied in [5, 9]):

∇AF(A,B,C;Λ) =
[
−TI,JK

(1) +AΛ(C⊙B)T
]
(C⊙B)Λ

= −TI,JK

(1) (C⊙B)Λ+AΛ(CTC)⊡ (BTB)Λ, (10)

∇BF(A,B,C;Λ) =
[
−TJ,KI

(2)
+BΛ(C⊙A)T

]
(C⊙A)Λ,

= −TJ,KI

(2) (C⊙A)Λ+BΛ(CTC)⊡ (ATA)Λ (11)

∇CF(A,B,C;Λ) =
[
−TK,JI

(3) +CΛ(B⊙A)T
]
(B⊙A)Λ

= −TK,JI

(3)
(B⊙A)Λ+CΛ(BTB)⊡ (ATA)Λ, (12)

where⊡ stands for the Hadamard (entry-wise) matrix product.

By equating the gradient components to zero, a simple solution is obtained:

Â = TI,JK

(1) (Λ(C⊙B)T )† (13)

B̂ = TJ,KI

(2)
(Λ(C⊙A)T )† (14)

Ĉ = TK,JI

(3) (Λ(B⊙A)T )†, (15)

where(·)† stands for the pseudo-inverse (or Moore-Penrose generalized matrix inverse).

In [8, 9], gradient approaches were mentioned. It was suggested in [22, 29] to use Gauss-Newton

approaches (and more precisely the Levenberg-Marquardt method, which was implemented in

[7, 8]). Lastly in [14], Quasi-Newton approaches have been reported.

However, the polyadic decomposition ofn−way arrays may be an ill-posed problem and may

lead to unstable estimation of its components such as two factor degeneracy (2FDs) [24] (pres-

ence in the solution of almost collinear solutions but with opposite signs involving that they

almost cancel out each other contributions).
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Moreover, as argued earlier, we concentrate on real positive tensors and their decomposition with

real positive loading matrices [28, 31]. Hence in the next sections, we focus on a well-posed

problem [16],i.e. Nonnegative Tensor FactorizationNTF.

3. Nonnegative 3-way array factorization

In this section, we discuss approaches in which the three loading matricesA, B andC are

constrained to be nonnegative.

3.1. Existing approaches

A first approach developed in [22, 29, 30] has been to use some of the existing well-known

NonNegative Least Squares (NNLS) methods to solve the following “vectorized” system:

vec{TI,JK

(1) −AΛ(C⊙B)T } = 0IJK,1 (16)

where thevec{·} operator applied on a given matrix stacks its columns into a column vector and

0IJK,1 is a vector of sizeIJK × 1 which contains only null elements.

A second approach consists of modifying the previous cost functionF , by adding penalty terms

whose aim is to impose boundedness on the solution and/or to enforce other specific propriety

on the solution such as smoothness, sparsity or uncorrelatedness. In [5], it is suggested among

other things to use one of the two following cost functions:

G(A,B,C;Λ) = F(A,B,C;Λ),+αA‖A‖
2
F + αB‖B‖

2
F + αC‖C‖

2
F (17a)

G1(A,B,C;Λ) = F(A,B,C;Λ) + αA‖A‖1 + αB‖B‖1 + αC‖C‖1, (17b)

subject to nonnegativity constraints.αA, αB andαC are nonnegative regularization parameters

to impose boundedness on the solution. In (17a) the standardTikhonov (l2-norm) regularization

is meant to enforce smoothness of the solution and in (17b) the l1-norm regularization (‖A‖1 =
∑

i,j |aij |) is meant to enforce sparsity of the solution. The differentalgorithms already evoked in

the previous section can be applied to solve that optimization problem. The gradient components
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given in (10), (11) and (12) are simply replaced by:

∇AG(·) = ∇AF(·) + 2αAA or ∇AG1(·) = ∇AF(·) + αA1I,F , (18)

∇BG(·) = ∇BF(·) + 2αBB or ∇BG1(·) = ∇BF(·) + αB1J,F , (19)

∇CG(·) = ∇CF(·) + 2αCC or ∇CG1(·) = ∇CF(·) + αC1K,F , (20)

where1K,F stands for theK × F matrix with ones everywhere. In [5], it was suggested to use

theALS technique again. By equating the gradient components to zero, the solutions in the case

of the l2-norm penalization are found to be equal to:

Â = TI,JK

(1) (C⊙B)Λ
[
Λ(C⊙B)T )(C ⊙B)Λ+ 2αAIF

]†
, (21)

B̂ = TJ,KI

(2)
(C⊙A)Λ

[
Λ(C⊙A)T )(C⊙A)Λ+ 2αBIF

]†
, (22)

Ĉ = TK,JI

(3) (B⊙A)Λ
[
Λ(B⊙A)T )(B⊙A)Λ+ 2αCIF

]†
. (23)

whereas, in the case of thel1-norm penalization, they are:

Â =
[
TI,JK

(1) (C⊙B)Λ − αA1I,F

] [
Λ(C⊙B)T )(C⊙B)Λ

]†
, (24)

B̂ =
[
TJ,KI

(2) (C⊙A)Λ− αB1J,F

] [
Λ(C⊙A)T )(C ⊙A)Λ

]†
, (25)

Ĉ =
[
TK,JI

(3) (B⊙A)Λ− αC1K,F

] [
Λ(B⊙A)T )(B⊙A)Λ

]†
. (26)

Finally, a “projection operator”[·]+ is applied, whose aim is to enforce positive entries (since

that property is obviously not guarantied by the penalty terms that have been added).

Â←
[
Â
]
+
, B̂←

[
B̂
]
+
, Ĉ←

[
Ĉ
]
+
. (27)

where[M = (mij)]+ returns a matrix of the same size asM whose(i, j) entry ismax{ǫ,mij}

if ǫ is a small constant (typically10−16).

3.2. Suggested approach

3.2.1. Loading matrices parameterization

One obvious way to constraint the loading matrices to have nonnegative entries is to implicitly

take into account their nonnegative aspect in their parameterization without modifying the used
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cost function. This kind of parameterization has been recently used in nonnegative matrix fac-

torization [5] problems. To consider that a matrix, sayA′, possesses only nonnegative terms,

we can simply assume that all its entries are defined asa′ij = a2ij . Using the Hadamard entry-

wise product, it implies thatA′ = A ⊡A, for some (non unique) matrixA. This suggests the

following cost function:

H(A,B,C) = F(A⊡A,B⊡B,C⊡C) (28)

= ‖TI,JK

(1) − (A⊡A)Λ [(C⊡C)⊙ (B⊡B)]T ‖2F = ‖δ(1)‖
2
F (29)

= ‖TJ,KI

(2) − (B⊡B)Λ [(C⊡C)⊙ (A⊡A)]T ‖2F = ‖δ(2)‖
2
F (30)

= ‖TK,JI

(3) − (C⊡C)Λ [(B⊡B)⊙ (A⊡A)]T ‖2F = ‖δ(3)‖
2
F , (31)

The differentialdH of H has to be derived and then we will be able to calculate the gradient

components (theI ×F matrix∇AH, theJ ×F matrix∇BH and theK ×F matrix∇CH) and

eventually the Hessian matrices.

With this goal, define the Frobenius scalar product〈A,B〉 = trace{ATB}. We also have:

〈A,A〉 = ‖A‖2F = trace{ATA}. As a consequence, the cost functionH(A,B,C) can be

rewritten – in the first mode for example – as:

〈δ(1), δ(1)〉 = trace
{
δ
T
(1)δ(1)

}

= trace

{(
TI,JK

(1) − (A⊡A)Λ[(C⊡C)⊙ (B⊡B)]T
)T

·

(
TI,JK

(1) − (A⊡A)Λ[(C ⊡C)⊙ (B⊡B)]T
)}

.

The calculation ofdH(A,B,C) is performed in Appendix A, and is equal to:

dH(A,B,C) = 〈4
[
A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)]
, dA〉

+ 〈4
[
B⊡

(
(−δ(2)) [(C⊡C)⊙ (A⊡A)]Λ

)]
, dB〉

+ 〈4
[
C⊡

(
(−δ(3)) [(B⊡B)⊙ (A⊡A)]Λ

)]
, dC〉 (32)
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3.2.2. Gradient matrices

Using (32), the three gradient components∇AH, ∇BH and∇CH can be derived. They are

found to be equal to:

∇AH(A,B,C) =
∂H(A,B,C)

∂A
= 4A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)
, (33)

∇BH(A,B,C) =
∂H(A,B,C)

∂B
= 4B⊡

(
(−δ(2))[(C ⊡C)⊙ (A⊡A)]Λ

)
, (34)

∇CH(A,B,C) =
∂H(A,B,C)

∂C
= 4C⊡

(
(−δ(3))[(B⊡B)⊙ (A⊡A)]Λ

)
. (35)

We can then build either the following(I + J +K)× F matricesG(k) andX(k) :

G(k) =




∇AH(A
(k),B(k),C(k))

∇BH(A
(k),B(k),C(k))

∇CH(A
(k),B(k),C(k))


 , X(k) =




A(k)

B(k)

C(k)


 (36)

or the following(I + J +K)F × 1 vectors:

g(k) =




vec{∇AH(A
(k),B(k),C(k))}

vec{∇BH(A
(k),B(k),C(k))}

vec{∇CH(A
(k),B(k),C(k))}


 , x(k) =




vec{A(k)}

vec{B(k)}

vec{C(k)}


 (37)

4. Preconditioned non linear conjugate gradient algorithms

To estimate the three loading matricesA, B andC, the cost functionH given in (29) or (30) or

(31) depending on the considered mode has to be minimized. Tothat aim, we suggest, here, to

optimize the cost functionH simultaneously with respect to all variables using a preconditioned

non linear conjugate gradient method [27].

In the classical gradient approach,X given in (36) is updated at each iterationk (k = 1, 2, . . .)

according to the following adaptation rule:

X(k+1) = X(k) − µ(k)G(k) or x(k+1) = x(k) − µ(k)g(k), (38)

whereG(k) is the gradient matrix given in (36) using (33), (34) and (35)andµ(k) the step size

(the problem of the choice of the stepsize is treated in Section 4.3). We notice that when the

10



nonnegativity constraint no more holds, (33), (34) and (35)are simply respectively replaced by

(10), (11) and (12).

In the preconditioned conjugate gradient approach, the vectorizedX denoted byx is initialized

usingd(1) = −g(1) and updated at each iterationk according to the following adaptation rule:





x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −(M(k+1))−1g(k+1) + β(k)d(k)
(39)

where the residual (in the classical linear conjugate gradient) is then set to the negation of the

“vectorized” gradient matrixg(k+1) which is updated using (33), (34) and (35) in (37). The

(I+J+K)F ×1 vectord(k) contains the search directions and the square(I+J+K)F ×(I+

J+K)F matrixM stands for the preconditioner. As noticed in [25][27], the non linear conjugate

gradient method can be preconditioned by choosing a preconditioner M that approximates the

Hessian matrix or at least its diagonal. In the non linear conjugate gradient, two expressions

for the value ofβ are classically used: the Fletcher-Reeves (βFR) and the Polak-Ribière (βPR)

formula [25]:

β
(k+1)
FR

=
g(k+1)Tg(k+1)

g(k)T ,g(k)
(40)

β
(k+1)
PR =

g(k+1)T (g(k+1) − g(k))

g(k)Tg(k)
. (41)

Finally, as noticed in [25] (p. 102), if we reinitialize a conjugate gradient method by setting

d(i) = −g(i), from time to time, we might get better performance than by constructingd(i) by

one of the standard formulaes (i.e. combining (39) and (40) or (39) and (41)) at each iteration.

In our case, we have chosen to perform this “restart” every(I + J +K)F iterations.

4.1. Particular cases

4.1.1. Non linear conjugate gradient algorithm

Considering thatM = I(I+J+K)F in (39), we simply obtain the non linear conjugate gradient

method: 



x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k)
(42)
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which can be equivalently written in the ensuing matrix form:




X(k+1) = X(k) + µ(k)D(k)

D(k+1) = −G(k+1) + β(k)D(k)
(43)

with

D(k) =




D
(k)
A

D
(k)
B

D
(k)
C ,


 d(k) =




vec{D
(k)
A }

vec{D
(k)
B }

vec{D
(k)
C }


 =




d
(k)
A

d
(k)
B

d
(k)
C


 (44)

The two expressions for the value ofβ that are classically used remain the Fletcher-Reeves (βFR)

and the Polak-Ribière (βPR) formula (now written using matrices instead of vectors) [25]:

β
(k+1)
FR =

〈G(k+1),G(k+1)〉

〈G(k),G(k)〉
=
‖G(k+1)‖2F
‖G(k)‖2F

, (45)

β
(k+1)
PR =

〈G(k+1),G(k+1) −G(k)〉

〈G(k),G(k)〉
=
〈G(k+1),G(k+1) −G(k)〉

‖G(k)‖2F
. (46)

And again, this algorithm is initialized by usingD(1) = −G(1) and restarted after a given

number, say(I + J + K)F of iterations, withD(i) = −G(i) as initial guess, to speed up the

convergence.

4.1.2. Quasi Newton approaches (BFGS andDFP algorithms)

In (39), by settingβ = 0 and considering that the preconditionerM is a(I + J +K)F × (I +

J +K)F approximation of the Hessian matrix given by (47):

M(k+1) = M(k) +
∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
−

(M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉
, (47)

we obtain the following adaptation rule as in the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm:
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x(k+1) = x(k) − µ(k)(M(k))−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉

(48)

Using the inversion lemma and denoting byρ = 1
(∆g(k))T∆x(k) , the inverse of the approximate

Hessian matrixM(k) can be estimated. The algorithm in (48) can be rewritten:





x(k+1) = x(k) − µ(k)(M(k))−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

(M(k+1))−1 = (M(k))−1 + ρ
[
1 + ρ(∆g(k))T (M(k))−1∆g(k)

]
∆x(k)(∆x(k))T

−ρ∆x(k)(∆g(k))T (M(k))−1 − ρ(M(k))−1∆g(k)(∆x(k))T

(49)

In (39), by settingβ = 0 and considering that the preconditionerM is directly a(I+J+K)F×

(I + J +K)F approximation of the inverse of the Hessian matrices given in (50):

M(k+1) = M(k) +
∆x(k)(∆x(k))T

〈∆g(k),∆x(k)〉
−

(M(k)∆g(k))(M(k)∆g(k))T

〈∆g(k),M(k)∆g(k)〉
(50)

we obtain the following adaption rule as in the Davidon-Fletcher-Powell algorithm (DFP):




x(k+1) = x(k) − µ(k)M(k)g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆x(k)(∆x(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆g(k))(M(k)∆g(k))T

〈∆g(k),M(k)∆g(k)〉

(51)

In all the cases, the algorithm is initialized using forM(1) (or (M(1))−1), a symmetric,(I +J +

K)F × (I + J +K)F positive-definite matrix.

4.1.3. Levenberg-Marquardt algorithm

When the preconditionerM tends to loose its “hereditary positive-definiteness” property through

the iterations, and hence may fail to construct descent directions, it is better to stabilize it using
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trust region techniques that modifyM by adding a multiple of the identity matrix as in the

Levenberg-Marquardt approach [18]:





x(k+1) = x(k) − µ(k)(M(k) + αI(I+J+K)F)
−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉

(52)

whereα is a relaxation coefficient. We notice that by settingα = 0 in (52), the algorithm in (48)

is recovered, but, by settingM = I(I+J+K)F in (52) (or by considering thatα is chosen high

enough), the gradient algorithm in (38) may be obtained.

4.2. Algorithmic complexity

Regarding to the algorithmic complexity, for theALS algorithm, the calculation has been done

in [8]. It amounts too(7F 2(JK +KI + IJ) + 3FIJK). For the gradient algorithm, the com-

putational cost per iterationk approximately amounts too(6IFJK) (since for each of the three

gradient components, we have four operations: 2 matrices products1 + 1 Khatri-Rao product2 + 1

addition). This computational cost is thus governed by the calculation of the matrixG. The total

number of arithmetic operations iso(6IFJKNit) if Nit stands for the total number of iterations

to reach convergence. For the gradient algorithm with nonnegativity constraint, the algorithmic

complexity is nearly the samei.e. o(6IFJK) and the total number of arithmetic operations is

o(6IFJKNit) too.

For the non linear conjugate gradient method (in both casesi.e. with or without the nonnegativity

constraint), the algorithmic complexity approximativelyamounts too(6FIJK + 2(I + J +

K)F 2) (since the calculation ofβ adds two matrices multiplications).

For theBFGS method (Newton-Raphson approach) (in both casesi.e. with or without the non-

negativity constraint) the algorithmic complexity per iteration amounts to:o(6IFJK + 4(I +

1The cost for multiplying theN ×M matrixB by theM × P matrixA is assumedo(NMP ).
2The cost for calculating the Khatri-Rao product between theN×M matrixB by theP×M matrixA is assumed

o(NMP ).
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Method Cost per iteration
General case CaseI = J = K

ALS (without positivity constraint) 7(JK +KI + IJ)F 2 + 3IJKF 21(IF )2 + 3FI3

ALS-Cichocki 3IJKF 3FI3

Gradient 6IJKF 6FI3

Non linear conjugate gradient 6IJKF + 2(I + J +K)F 2 6FI3 + 6IF 2

Gauss-Newton (BFGS) (I + J +K)3F 3 27I3F 3

BFGS using (49) 4(I + J +K)2F 2 36I2F 2

Gauss-Newton (DFP) 4(I + J +K)2F 2 36I2F 2

Levenberg-Marquardt (I + J +K)3F 3 27I3F 3

Preconditioned non linear conjugate gradient (I + J +K)3F 3 27I3F 3

Table 1: Algorithmic complexity of various algorithms

J +K)2F 2+(I +J +K)3F 3) since 4 matrices multiplications and one matrix inversion3 have

been added. Finally the computational cost per iteration≈ o((I + J +K)3F 3) which implies

that it is mainly governed by the matrix inversion.

If the matrix inversion is avoided ((49) instead of (48)), the computational cost is reduced to

≈ o(4(I + J +K)2F 2).

For theDFP method, (in both casesi.e. with or without the nonnegativity constraint) the algo-

rithmic complexity per iteration amounts to:o(4(I+J+K)2F 2). Finally, for the preconditioned

linear conjugate gradient method (in both casesi.e. with or without the nonnegativity constraint),

the algorithmic complexity per iteration amounts to≈ o((I + J +K)3F 3) too since theβ cal-

culation computational cost becomes negligible. These results are summarized in Table 1.

4.3. How to chooseµ(k) ?

4.3.1. Enhanced line search(ELS)

TheELS enhancement is applicable to any iterative algorithm, provided the optimization crite-

rion is a polynomial or a rational function. It searches for the best stepsizeµopt that corresponds

to theglobal minimumof (28) (or (29) or (30) or (31)). It implies the algebraic calculation of the

3The cost for inverting theN × N matrixB is assumedo(N3) (Gauss-Jordan elimination). This cost could be
reduced using another algorithm.
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following quantity:

H(A(k+1),B(k+1),C(k+1)) = H
[
(A(k) + µDA

(k))⊡ (A(k) + µDA
(k)),

(B(k) + µDB
(k))⊡ (B(k) + µDB

(k)), (C(k) + µDC
(k))⊡ (C(k) + µDC

(k))
]
. (53)

It has to be minimized with respect toµ. As shown in Appendix B, this quantity is a 12th-degree

polynomial whose expression is given by (we opt to omit the dependency upon the parameters

of H to simplify the various expressions):

H(.) =

12∑

i=0

aiµ
i, (54a)

dH(.) =

11∑

i=0

(i+ 1)ai+1µ
i, (54b)

where the thirteen coefficientsai, for i = 0, . . . , 12 are found equal to (see Appendix B to get

the definition ofK(i), wherei varies from1 to 6):

a0 = trace
[
K0K0

T
]

(55a)

a1 = trace
[
2K1K0

T
]

(55b)

a2 = trace
[
2K2K0

T +K1K1
T
]

(55c)

a3 = trace
[
2
(
K3K0

T +K2K1
T
)]

(55d)

a4 = trace
[
2
(
K4K0

T +K3K1
T
)
+K2K2

T
]

(55e)

a5 = trace
[
2
(
K5K0

T +K4K1
T +K3K2

T +K3K2
T
)]

(55f)

a6 = trace
[
2
(
K6K0

T +K5K1
T +K4K2

T
)
+K3K3

T
]

(55g)

a7 = trace
[
2
(
K6K1

T +K5K2
T +K4K3

T
)]

(55h)

a8 = trace
[
2
(
K6K2

T +K5K3
T
)
+K4K4

]
(55i)

a9 = trace
[
2
(
K6K3

T +K5K4
T
)]

(55j)

a10 = trace
[
2K6K4

T +K5K5
T
]

(55k)

a11 = trace
[
2K6K5

T
]

(55l)

a12 = trace
[
K6K6

T
]

(55m)
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By derivating the expression ofH with respect toµ, we obtain the polynomial of degree11 given

in (54b). The optimal stepsizeµopt corresponds, then, to the real and positive root of the 11-order

polynomial defined in (54b) leading to the minimum of the criterion given in (54a).

With regard to the algorithmic complexity, the cost is now ruled by the calculation of the 13

coefficients of the 12th-degree polynomial given in (54a). The obtained results are summarized

in Table 2.

4.3.2. Backtracking

The main problem with the enhanced line search is its computational cost. As already noticed,

the cost in theELS version of the algorithms is ruled by the calculation of the 13 coefficients of

the polynomial we intend to minimize. An alternative approach, called backtracking, consists of

computing the locally optimal step size and to alternate with ELS every 10 or 20 iterations for

example. The main advantage of such an approach is its low computational cost. This method

attempts to determine a step length so that the step is sufficiently long while still producing some

amount of decrease of the cost function. As a consequence, the method implies to start with a

stepµ large enough (for example a unit step size) and to decrease ititeratively by a factorβ

i.e. µ = βµ (with β commonly chosen between0.1 and0.8) until the Armijo condition [1][19]

given in (56) is fulfilled. The resultingµ is the stepsizeµ(k) used in the updating rule of the

optimization algorithm. We still consider the same cost functionH given by (29). During the

updating stage of the considered algorithm, it becomesH(A + µDA,B + µDB,C + µDC)

given in (53). Thus, with our notations, the Armijo condition reads:

H(A+ µDA,B+ µDB,C+ µDC) < H(A,B,C) + α µ gTd (56)

whereα is a constant parameter often chosen within[10−4, 10−1], d is the descent direction

given in (44) andg is the gradient given in (37). Sinced is a descent direction, we havegTd < 0

(in the specific case of the gradient algorithm,d = −g, whereasd = −M−1g for Quasi-Newton

algorithms).

It is also possible to combine the backtracking method together with a search by adjustment

method whose advantage is to include a “memory” of the previous steps. For example, if theµ
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Method Cost per iteration
General case CaseI = J = K

ALS without positivity constraint 7(JK +KI + IJ)F 2 + 11IJKF + 9IJK 21I2F 2 + 11I3F + 9I3

Gradient 49KJI2 + 13IJKF 49I4 + 13I3F

Non linear conjugate gradient 2(I + J +K)F 2 + 49KJI2 + 13IJKF 6IF 2 + 49I4 + 13I3F

Gauss-Newton (BFGS) (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Gauss-Newton (BFGS with (49)) 4(I + J +K)2F 2 + 49KJI2 + 13IJKF 36I2F 2 + 49I4 + 13I3F

Gauss-Newton (DFP) 4(I + J +K)2F 2 + 49KJI2 + 13IJKF 36I2F 2 + 49I4 + 13I3F

Levenberg-Marquardt (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Preconditioned conjugate gradient (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Table 2: Algorithmic complexity for theELS version of the different algorithms

found during the backtracking step is lower than the initialstep calledµ0, µ0 is decreased (this

new value will be used for the next backtracking steps) by a factor β. On the opposite, if it is

higher thanµ0, µ0 is increased by another factorα > 1.

5. Computer simulations

Simulations are now provided to illustrate the behavior andthe performances of the proposed

NTF algorithms. To that aim, we consider the case of a fluorescence analysis. If a solution

is excited by an optical excitation, several effects may be produced: Rayleigh scatter, Raman

scatter and Fluorescence. At low concentrations, the Beer-Lambert law can be linearized so that

the fluorescence intensity rather accurately follows the model below [28, 17]:

I(λf , λe, k) = Io γ(λf ) ǫ(λe) ck

whereǫ denotes absorbance spectrum (sometimes called emission spectrum),λf is the fluores-

cence emission wavelength,λe the excitation wavelength,γ the fluorescence emission spectrum

andck is the concentration of the component in the sample numberk. Provided it can be sepa-

rated from diffusion phenomena, the fluorescence phenomenon allows to determine the concen-

tration of a diluted (fluorescent) chemical component, and possibly to recognize it thanks to its

fluorescent spectrum.

18



A difficulty appears when the solution contains more than onefluorescent solute. In such a case,

the overall fluorescence intensity is an unknown linear combination of component fluorescence

intensities:

I(λf , λe, k) = Io
∑

ℓ

γℓ(λf ) ǫℓ(λe) ck,ℓ (57)

ck,ℓ stands for the concentration of thel−th fluorescent solute in samplek. It is then necessary to

separate each component contribution. Assuming that a finite number of excitation and emission

frequencies are measured, so that the measurements are stored in a finite array of order 3 and

finite dimensions, sayI × J ×K, tijk = I(λf (i), λe(j), k). It is clear, by comparing equations

(57) and (2), that thanks to uniqueness of the CP decomposition, one can identifyγℓ(λf (i)) with

aif , ǫℓ(λe(j)) with bjf and ck,ℓ with ckf . Hence, the computation of the CP decomposition

yields emission spectra of each component as well as their concentration. There is no need to

know in advance what are the components expected to be present in the solution.

Two tensorsT1 andT2 have been simulated, usingF = 4 components whose71× 47 emission-

excitation matrices (aibT
i , ∀i = 1, . . . , 4) were very similar to the ones displayed in Fig. 4.

These images [21] were provided by the PROTEE-EA 3819 Laboratory at the South Toulon Var

University (France). Two random positive matricesC have been used (a10 × 4 matrix and a

128× 4 matrix). The first tensorT1 is 71× 47× 10 and the second tensorT2 is 71× 47× 128.

To establish a comparison between the different algorithms, we need an error index. We have

chosen to use:E = ‖T − T̂‖2F or EdB = 10 log10(E), with T̂ =
∑F

f=1 âf ⊛ b̂f ⊛ ĉf andâ, b̂

andĉ the estimated factors. The best results are obtained when the error indexE is found to be

close to 0 in linear scale (−∞ in logarithmic scale).

In the left column of the Fig. 1, we have compared the results obtained with theELS version

of the different suggested algorithms (i.e. ELS is executed at each iteration, excepted for the

so-calledALS− Cichocki andNTF-HALS algorithms, in which there is noELS enhancement)

versus the iterations, while the results are represented versus the number of arithmetic operations

in the right column of the Fig. 1. For Fig. 1, 2 and 3, all the algorithms were initialized using the

Bro’s DTLD algorithm [28]. For theALS− Cichocki algorithm with eitherl1-norm orl2-norm

regularization, we have chosenαA = αB = αC = 10−6 (it is the reason why the performances
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are bounded). For theNTF-HALS algorithm, we have implemented the algorithm described

p. 357 of [5]. We can observe that both Gauss-Newton algorithms (BFGS andDFP) have nearly

the same behavior. The conjugate gradient approach and finally the gradient method require more

time to reach convergence. However, the conjugate gradientalgorithm offers a good compromise

between speed and performances and contrary to Quasi-Newton algorithms, it does not require

the estimation of the(I+J+K)F×(I+J+K)F Hessian matrices (or their approximation) and

as a consequence it can be applied to very large tensors. Eventhough theNTF-ALS andNTF-

HALS algorithms are often the fastest algorithms during the firstiterations, we can observe in

the bottom of the Fig. 5, that the reconstructed emission-excitation matrices are not necessarily

good (even if the reconstruction error was weak; the estimated emission-excitation matrices have

to be compared with the true emission-excitation matrices that were perfectly estimated in the

Fig. 4 when there is an error in the model (here,F was assumed five whereas four components

were effectively present in the mixture). On the chosen example (where all the algorithms were

initialized using the same random initialization), our suggested algorithms seem less sensitive to

this kind of model error as observed in the top of the Fig. 5. Finally, a good way to diminish the

global computational time consists of alternating betweenELS (every say10 or 20 iterations)

and backtracking as it can be observed in the Fig. 2 and 3.

6. Conclusion & Discussion

In this article, we have suggested several algorithms to tackle the problem of the computation of

the minimal polyadic decomposition of nonnegative three-way arrays. The calculation of gra-

dient matrices has been performed, allowing to implement preconditioned non linear conjugate

gradient, gradient and Quasi-Newton approaches. Two versions of each algorithm have been

studied: the enhanced line search (ELS) version and the backtracking version (alternating with

ELS). The algorithmic complexity has been provided too. Finally, computer simulations have

been performed in the context of data analysis, in order to demonstrate both the good behavior

of these algorithms compared to others put forward in the literature, and their usefulness in data

mining applications.
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Figure 1: Reconstruction error (dB) versus the number of iterations (left) using a nonnegative71×47×10 tensor (top
left), a nonnegative71 × 47 × 128 tensor (bottom left). Reconstruction error (dB) versus thenumber of arithmetic
operations (right) using a nonnegative71 × 47× 10 tensor (top right), a nonnegative71 × 47× 128 tensor (bottom
right). The same legend is used for the 4 charts.

Appendix

Appendix A. Calculation ofdH(A,B,C)

We use similar properties regarding the trace as those already used in [10]. Considering three

M ×M square matricesD1, D2 andD3 and four rectangular matricesD4, D5, D6 andD7

(resp.M ×N , N ×M , M ×N andM ×N ), we have the following properties [20]:

P0. (D4D5)
T = DT

5 D
T
4 .

P1. trace {D1} = trace
{
DT

1

}
.

P2. trace {D1 +D2} = trace {D1}+ trace {D2}.

P3. trace {D1D2D3} = trace {D3D1D2} = trace {D2D3D1}

⇒ trace {D1D2} = trace {D2D1}.
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Figure 2: ComparisonBFGS with backtracking (ELS every 10 iterations) andBFGS with ELS at each iteration:
reconstruction error as a function of the number of arithmetic operations.

P4. trace {D4D5} = trace {D5D4}.

P5. d(DT
1 ) = (dD1)

T .

P6. d(D1D2) = dD1D2 +D1dD2.

P7. d(D1 +D2) = dD1 + dD2.

P8. d(trace {D1}) = trace {dD1}.

P9. d(D1 ⊡D2) = dD1 ⊡D2 +D1 ⊡ dD2 ⇒ d(D1 ⊡D1) = 2D1 ⊡ dD1.

P10. D4 ⊡D6 = D6 ⊡D4.

P11. (D4 ⊡D6)
T = DT

4 ⊡DT
6 .

P12. trace{DT
4 (D6 ⊡D7)} = trace{(DT

4 ⊡DT
6 )D7}.

Like in [9], our aim is to obtain:

dH(A,B,C) = 〈
∂H(A,B,C)

∂A
, dA〉+ 〈

∂H(A,B,C)

∂B
, dB〉+ 〈

∂H(A,B,C)

∂C
, dC〉, (58)

where ∂·
∂A

means the partial derivative with respect to the matrixA.

22



0 1 2 3 4 5 6 7 8 9

x 10
11

−140

−120

−100

−80

−60

−40

−20

0

20

Number of arithmetic operations

R
ec

on
st

ru
ct

io
n 

er
ro

r 
(d

B
)

Figure 3: ComparisonBFGS with backtracking (ELS every 10 iterations) andBFGS with ELS at each iteration:
reconstruction error as a function of complexity

Or, using circular permutations and the aforementioned propertiesP1 −P9 , we have:

dH(A,B,C) = trace
{
d(δT(1))δ(1)

}
+ trace

{
δ
T
(1)dδ(1)

}

= 2trace
{
δ
T
(1)dδ(1)

}
= 2trace

{
δ
T
(2)dδ(2)

}
= 2trace

{
δ
T
(3)dδ(3)

}

= 4trace
{
−δT(1)(A⊡ dA)Λ [(C⊡C)⊙ (B⊡B)]T − δ

T
(2)(B⊡ dB)Λ [(C⊡C)⊙ (A⊡A)]T

−δT(3)(C⊡ dC)Λ [(B⊡B)⊙ (A⊡A)]T
}

= trace
{
4
(
Λ [(C⊡C)⊙ (B⊡B)]T (−δ(1))

T
)
(A⊡ dA)

}

+ trace
{
4
(
Λ [(C⊡C)⊙ (A⊡A)]T (−δ(2))

T
)
(B⊡ dB)

}

+ trace
{
4
(
Λ [(B⊡B)⊙ (A⊡A)]T (−δ(3))

T
)
(C⊡ dC)

}
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Figure 4: Case4 factors, assumingF = 4, the 4 estimated emission-excitation images that perfectly fit the emission-
excitation images of the 4 considered fluorophores.

Using propertyP10 −P12 ([20], p. 53) and the fact thatΛ = ΛT sinceΛ is diagonal , we have:

dH(A,B,C) = trace
{
4
[(

Λ [(C⊡C)⊙ (B⊡B)]T (−δ(1))
T
)
⊡AT

]
dA

}

+ trace
{
4
[(

Λ [(C⊡C)⊙ (A⊡A)]T (−δ(2))
T
)
⊡BT

]
dB

}

+ trace
{
4
[(

Λ [(B⊡B)⊙ (A⊡A)]T (−δ(3))
T
)
⊡CT

]
dC

}

= trace
{
4
[
A⊡

(
−δ(1) [(C⊡C)⊙ (B⊡B)]Λ

)]T
dA

}

+ trace
{
4
[
B⊡

(
−δ(2) [(C⊡C)⊙ (A⊡A)]Λ

)]T
dB

}

+ trace
{
4
[
C⊡

(
−δ(3) [(B⊡B)⊙ (A⊡A)]Λ

)]T
dC

}

= 〈4
[
A⊡

(
−δ(1) [(C⊡C)⊙ (B⊡B)]Λ

)]
, dA〉

+ 〈4
[
B⊡

(
−δ(2) [(C⊡C)⊙ (A⊡A)]Λ

)]
, dB〉

+ 〈4
[
C⊡

(
−δ(3) [(B⊡B)⊙ (A⊡A)]Λ

)]
, dC〉
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By identification with (58), it is finally found that:

∇AH(A,B,C) =
∂H(A,B,C)

∂A
= 4A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)
, (59)

∇BH(A,B,C) =
∂H(A,B,C)

∂B
= 4B⊡

(
(−δ(2))[(C ⊡C)⊙ (A⊡A)]Λ

)
, (60)

∇CH(A,B,C) =
∂H(A,B,C)

∂C
= 4C⊡

(
(−δ(3))[(B⊡B)⊙ (A⊡A)]Λ

)
. (61)

Appendix B. Enhanced line search

We intend to minimize the following expression with respectto µ:

H(.) = ‖TI,JK−[(A+ µDA)⊡ (A+ µDA)]Λ

[((C + µDC)⊡ (C+ µDC))⊙ ((B+ µDB)⊡ (B+ µDB))]
T ‖2

First, to clarify the expressions, we define some intermediate quantities:

E0 = A⊡A

E1 = A⊡DA +DA ⊡A = 2A⊡DA

E2 = DA ⊡DA

F0 = (C⊡C)⊙ (B⊡B)

F1 = (C⊡DC)⊙ (B⊡B) + (DC ⊡C)⊙ (B⊡B)

+ (C⊡C)⊙ (B⊡DB) + (C⊡C)⊙ (DB ⊡B)

= 2 [(C⊡DC)⊙ (B⊡B) + (C⊡C)⊙ (B⊡DB)]

F2 = (C⊡DC)⊙ (B⊡DB) + (C⊡DC)⊙ (DB ⊡B) + (DC ⊡C)⊙ (B⊡DB)

+ (DC ⊡C)⊙ (DB ⊡B) + (DC ⊡DC)⊙ (B⊡B) + (C⊡C)⊙ (DB ⊡DB)

= 4 [(C⊡DC)⊙ (B⊡DB)] + (DC ⊡DC)⊙ (B⊡B) + (C ⊡C)⊙ (DB ⊡DB)

F3 = (C⊡DC)⊙ (DB ⊡DB) + (DC ⊡C)⊙ (DB ⊡DB)

+ (DC ⊡DC)⊙ (B⊡DB) + (DC ⊡DC)⊙ (DB ⊡B)

= 2[(C⊡DC)⊙ (DB ⊡DB) + (DC ⊡DC)⊙ (B⊡DB)]

F4 = (DC ⊡DC)⊙ (DB ⊡DB)
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By developing, it leads to:

H(.) = ‖TI,JK − [E0 +E1µ+E2µ
2]Λ[F4µ

4 + F3µ
3 + F2µ

2 +F1µ+ F0]
T ‖2

= ‖(−E2ΛF4
T )µ6 + (−E1ΛF4

T −E2ΛF3
T )µ5

+ (−E0ΛF4
T −E1ΛF3

T −E2ΛF2
T )µ4 + (−E0ΛF3

T −E1ΛF2
T −E2ΛF1

T )µ3

+ (−E0ΛF2
T −E1ΛF1

T −E2ΛF0
T )µ2 + (−E0ΛF1

T −E1ΛF0
T )µ

+TI,JK −E0ΛF0
T ‖2

Again, we define intermediate variables:

K0=TI,JK −E0ΛF0
T K4=−E0ΛF4

T −E1ΛF3
T −E2ΛF2

T

K1=−E0ΛF1
T −E1ΛF0

T K5=−E1ΛF4
T −E2ΛF3

T

K2=−E0ΛF2
T −E1ΛF1

T −E2ΛF0
T K6=−E2ΛF4

T

K3=−E0ΛF3
T −E1ΛF2

T −E2ΛF1
T

H(.) = trace
{
(K6µ

6 +K5µ
5 +K4µ

4 +K3µ
3 +K2µ

2 +K1µ+K0)

(
K6µ

6 +K5µ
5 +K4µ

4 +K3µ
3 +K2µ

2 +K1µ+K0

)T}

= trace
{
(K6K6

T )µ12

+ (K6K5
T +K5K6

T )µ11

+ (K6K4
T +K5K5

T +K4K6
T )µ10

+ (K6K3
T +K5K4

T +K4K5
T +K3K6

T )µ9

+ (K6K2
T +K5K3

T +K4K4
T +K3K5

T +K2K6
T )µ8

+ (K6K1
T +K5K2

T +K4K3
T +K3K4

T +K2K5
T +K1K6

T )µ7

+ (K6K0
T +K5K1

T +K4K2
T +K3K3

T +K2K4
T +K1K5

T +K0K6
T )µ6

+ (K5K0
T +K4K1

T +K3K2
T +K2K3

T +K1K4
T +K0K5

T )µ5

+ (K4K0
T +K3K1

T +K2K2
T +K1K3

T +K0K4
T )µ4
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+K3K0
T +K2K1

T +K1K2
T +K0K3

T )µ3

+ (K2K0
T +K1K1

T +K0K2
T )µ2

+ (K1K0
T +K0K1

T )µ

+K0K0
T
}

The thirteen coefficientsa0, . . . , a12 are finally obtained by identification.
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Figure 5: Case4 factors, assumingF = 5, the 5 estimated emission-excitation images using the conjugate gradient
algorithm with positivity constraint (top) and theALS algorithm with positivity constraint projection based (bottom).
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